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MARTIN COSTABELY

Abstract, The simple and double layer potentials for second order lnear strangly elliptic differential
0 pemtof% on Lipschitz domains are studied and it is shown that in a certain range of Sobolev spaces, results
on condinuity and regularity can be obtained withoul using either Calderén’s theorems on the L,- -continuity
of the Cauchy integral on Lipschitz carves [1. L. Journé, “Calderén-Zygmuno operators, pseudo-differential
operators and the Caunchy integral of Calderdn,” in Lecture Notes in Math, 994, Springer-Verlag, Berlin,
:1983] or Dahlberg's estimates of harmonic measures [“On the Poisson integral for Lipschitzand C' domains,”
Staadiq Math., 66 (1979), pp. 7-24]. The operator of the simple layer potential and of the normal derivative
‘af the double layer potential are shown to be strongly elliptic in the sense that they satisfy Girding inequalities
~’in the respective énergy norms. As an appilcatlon, error estimates for Galerkin approximation schemes for
; mtt.gm! equations of the first kind are derived.

[25)

Key words. Lipschitz domains, tayer polentials, trace lemma, jump refations, Green’s formuia, Galerkin
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S R Introduction. Boundary value problcms on Lipschitz domains and the method
Of layer potentials for their solution have attracted some attention in recent years both
“in the theoretical and the applied mathematical literature.

- On one hand, the final proof by Coifman, Mclntosh, and Meyer [5] of Calderén’s
Theorem on the L,- -confinuity of the Cauchy integral on Lipschitz curves and

Dahlberg’s estimates [10] of the Poisson kernel paved the way for investigations of
-the Dirichlet and Neumann problems for the Laplace equation by means of boundary
integral equations [12],{21],[27]. This method was also applied to some boundary
“value problems for the equations of linear elasticity theory [20].

On the other hand, in the applied sciences, the so-called boundary element methods
are frequently used for domains with corners and edges without mathematical analysis
being available. As long as there exists no elementary proof of Calderén’s theorem
- and its consequences, it seems justified to study the range of possible results obtainable

without this deep and, for the nonspecialist, not casily accessible result.

" We use throughout the weak (distributional) definition of boundary values and
.- show that the operators of the simple layer, the double layer, the normal derivative of

--the simple layer, and the normal derivative of the double layer define bounded operators
_in fhose Sobolev spaces on the boundary that correspond to the “energy norm,” ie.,
“to the variational formulation of the boundary value problem, The simple layer and
“-the normal derivative of the double layer define strongly elliptic operators. This implies
~stability of corresponding Galerkin approximation schemes.
> 1In order to show continuity of the operators in a certain range of Sobolev spaces,

we prove a generalization of Gagliardo’s Trace Lemma (Lemma 3.6) and use regularity
“results for the Dirichiet and Neumann problems by Ne&as [23]. Nedas obtained these
- tesults by elementary means, applying an identity of Rellich that had been used for
. -similar purposes by Payne and Weinberger {24] and recently by Jerison and Kenig
{16],[17] and Verchota [21],[27]. The same tools yield regularity results for the
solutions of the integral equations and also invertibility under some hypotheses on the

* Received by the editors December 16, 1985; accepted Tor publication {in revised form) June 18, 1947.
+ Mathematisches Institut, Technische Hochschule Datmstadt, 3-6100 Darmstadt, Federal Repubhc
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614 MARTIN COSTABEL

differential operator and its fundamental solution satisfied for instance in the case of-
the Laplace operator uniess the domain is a subset of R with analytic capacity equal

fo one,

This work is part of the author’s habilitation thesis [7]. Further results concerning
strong ellipticity of boundary integral operators for higher order differential equat:om"
on smooth domains have been published [9]. That paper also contains an extefsive.
list of references on the Calderén-Seeley-Hérmander method of boundary integral
equations for elliptic boundary value problems and on the history of strong ellipticity.
for boundary integral operators. Let us mention here only two references from each’
of these two fields: Fhe books by Chazarain and Piriou [4]} and by Dieudonné [11]-

describe the method of the Calderdn projector of elliptic equations of any order on

smooth domains. The lecture notes by Nedelec [22] and the paper by Hsiao and
Wendland [15] contain, for the example of the Laplace operator on smooth domains,’
the idea of transforming the strong ellipticity of the differential operator via Green’s
formula into the strong ellipticity of certain operators on the boundary (see the proof’

of Théorem 2 below}.

2. Main results. In this section we state the main results of this pdper Proofs cue'

given in § 4,

Let D ®’" be a bounded Lipschitz domain. This means th&t its boundary I' is’

tocally the graph of a Lipschitz function. For properties of Lipschitz domains we refer
to Necas [23] and Grisvard [14]. Because of the invariance of the Sobolev spdces

= W** under Lipschitz coordinate transformations for [s| =1, we can define the
spaces H*(I')(|s}=1) in the usual way using local coordinate representations of the
Lipschitz manifold I'. The same reason implies Gagﬁardo’s Trace Lemma:

(2.1) and has a continuous right inverse

Yo H' 21 > Hi(R")  for all se (3, 1].

Here traces are understood in the distributional sense, i.e., the mapping v, is well

defined for smooth (say continuous) functions, and for arbitrary ue HJj, (R") it is
defined by approximating u by smooth functions. :
Let '
(2.2) - P-—~L ajajkak+Lba+c
be a differential operator with C™(R"; C)-coefficients ay, b; and ¢. Here 9; = 3/dx;.
We emphasize that all results will also be valid in the case of systems, i.e., for
matrix valued coeflicients a;., b;
stick to the scalar case.
-We assume that P is strongly elliptic which implies that for the bilinear form

{2.3) : (l)u{u,v):mj ( ¥ a;\(huaanL b(}uv+mu)d
. 0 \ik=1 .
there holds a Garding inequality on all of H'({})
(2.4) Re @, (u, )= Allufd — Cllulli @ forall we H'(Q)

with some A > 0. (In the case of systems we have to require (2.4) explicitly. It holds,
for example, for the equations of linear elasticity theory by virtue of Korn’s inequality
[23,p. 194].)

= e®)

and ¢ It is only for notational convenience that we
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Furthermore we assume that P has a fundamental solution ( that is a two-sided
inverse of P on the space of compactly supported distributions on R”. Then & has a
‘weakly singular kernel that we also denote by G, and the function (x, y)+~> G(x, y} is
" outside the diagonal of R" xR".

For a locally integrable function v on I we then can define the simple layer potential

'5(2.5) Kpv{x) = J‘I_ Glx, p)o(y)ds(y)  (xeR™ND)

-where ds is the surface measure on I, and the double layer potential

(2.6) Klv(x)iﬁJ‘ 3 Glx, vyo(y) ds(y).
o r

"Here 9, is the conormal derivative

(27) a2 My O,

k=1

“where n; are the components of the aimost everywhere defined outward pointing normal

vector.
The boundary integral operators are defined by taking the boundary data of K|,

“and K, (in the distributional sense; see (2.1) and Lemma 3.2 below)

Av= v, Ky, By:= Vl(Kof)in),

Cpi= TO(KEUL:) Dy= -7 (K vla).

Here y,u=d,uly and y,u = a,uly~ %, nbulp.
Under these assumptions, we have the following contmutty result.
Turorem L, For all o ¢ (4, %) ihe following operators are continuous:
() Kot H™2 (1) » Hyo (RY);
(if) K,: H72()y» H'"(Q);
(iii) A:H "0y HY*(I);
(iv} B:H™'"(1)» H 72 (0);
(v) C:H Y (T)y-»HY* ('),
(vi) D:HY*™(I)» H ().
Remark. As shown by Verchota [27] and Jerison and Kenig [16],[17], the

Calderén and Dahlberg theorems give the above results for the endpoint o =4. An

argument using duality and interpolation then allows to cover the whole range v e
[—1,4], which is optimal in the sense that, for Lipschilz boundaries, Sobolev spaces
H*(I') with foi>1 cannot be defined in a unigue invariant way.

The operators A and D are strongly elliptic.

Tueorem 2. There exist compact operators

Ta:H VAT > HYAHE),  To:HYAHD) > H'Y(T)
and constants Aa, Ap > 0 such that

(2.9) Re((A+ Ta)v, 8y = Ao G2y for all ve HVA(TY),
(2.10) Re((D+ Tp)v, )= Aplloliraw, for all ve HYA(T).

Here the brackets (-, -} denote the natural duality between a Sobolev space H*(I')
and its dual H ().

The following regularity result holds.

Turorem 3. Let o €[0,1] and let e H V(") and ve H'(I") satisfy

Ape HY2 (1Y or BpeH V*'(I)
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and
' Coe H' (1) or Dve H™ V().

Then e H'*"(T') and ve H>*(T), and there hold the a priori estimates

(2.11) 1 sa- oy = CUAG 2oy + ),
(2.12) 9l sz = B o veroiey + ol -2,
(2.13) folliozimay = C Coll rrvegy + follaw),
(2.14} lolltrrzviy = CEDD| g2y + o) HY21)

Now let (8”),.., be a family of subspaces of H~"/*(I") with the property that the -

orthogonal projection operators onto $* tend strongly to the identity in H~Y*(T) o
h—0.
For the equation

(2.15) CAv=g with ge H/*(D)
we consider the Galerkin scheme

(2.16) Find o, & $" such that (A, wy=(g, w) for all we $"

From Theorem 2 then follows stability and convergence in H'/*(I"). Note that Theorem

2 implies that the operators A and D are Fredholm operators of index zero.

Tueorem 4. If the operator A: H™V*(I'y> HY*(T'} is injective then for any gc
HYX(X) there is a hy™ 0 such that for all 0< h < h, the Galerkin scheme (2. 16) has a -
unique solution v, € 8", For h -0, v, converges to the unique solution ve H™ (T of :

(2.15) quasioptimally, i.e., there exists a constant C such that Jorall 0<h <h,
(217) ”U"Uf,“n '”{]}AA{, Enf ”U le M2y
Of course, a corresponding result bolds for the operator D.

From Theorem 3 we can deduce asymptotic error estimates using {2.17). We
assume for instance that §” are regular finite element spaces, in the simplest case, e.g.,

consisting of functions piecewise constant on I' that are constant on the faces of a -

triangulation of I' quasiuniform with respect to h where h is the meshsize. Then there
holds the following theorem.

" Trisorem 5. Let A be injective as above and ge HYT). Then there is a constant -

C such thatfor all 0<h<h,

(2.18) fo—oullu vy = ChY gl g -

3. The tools. In this section we collect some results, some new but most of them -

known, and adapt them (o the present situation.
We need some further notation.

H,.,(R") is the space of distributions in H* with compdct support. It is thus in
a natural way the dual space of H;J(R").

Hu(Q)={ue H' ()| Pue L)}, fullfipw = lu) b+ Pulll,,
= — L A d,— Y. 3 +e  is the formal transpose of P.
F=1 . .

We may assume ay = ,; without restriction.
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By P° we denote any operator with the same principal part as P and positive on
H'(Q). We may take, e.g.,

— ¥ dapdt A with A=
k=1

-Thus there holds with some A >0 _
..(3-1) Re( Py, W)= ’\”“uiﬂ(m for all ue C*({)).

1t follows with the trace lemma (2.1) that for P° the Dirichlet problem is uniquely

solvable in the weak sense.
LEMMA 3.1. The Dirichlet problem

Plu=0 in, yu=v
has for ve HY(1) a unique solution w = To e H'(Q). The solution operator T: H'/*(I')-»
H(Q) is continuous.
From the partial integration formula

J (oue+uop)dx iJ‘ uvn;ds  for u, ve H{(Q)
£) . P

ollow [23] the first Green formula '

: (3.2} J. DPu dx = Pn(u, v}—J. aubds forve HYQ), wue H()

I

and the second Green formula

: (3.3) J. (uP’v—vPu) dxﬁj- (vau—uazpyds foruve H*(Q)
o a r .

'.: where we defined

n
dpu=a,u— 3, mbu
J=t

Now let u be a function defined on R" such that
= ulge CO() and  uy= ujgre Chanp((°),
where ¢ == R"\{) is the exterior domain. Let = Pu |~ and let
[ul= 70u2 voti; denote the jump of u across .

Then there holds the representation formula {for x e R"\T'}
(34)  u(x)=Gf{x)+ j (B0 Glx, YN u() ]~ G(x, )35 u()]) ds(y).
e

We shall need equations (3.2)-(3.4) for more general functions. To this purpose,
we first define the conormal derivative in the weak sense by using the ﬁiqt Green

formula (3.2). Recall yg from (2.1).
LeMMA 3.2, Let ue Hp(£)). Then the mapping

e {yiu, @)= Qo(u, vo @) mj Pu- yopdx
1)
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is @ continuous linear functional y,u on H'*(I') that coincides for ve H*()) with |

_ v (3.9) holds for all ¢ € H3(£2) due to Lemma 3.3, in particular for ¢ = Sf; hence
functional defined by a,u|r€ L(I") = H VYT, '

{yi81, x) = (b, voSf ) =0.
(3.5) The mapping v,: HW()—> H Y*(T) is continuous. ] ’
: . , gives from (3.10)
The following Jemma was shown by Grisvard [14] for the case P = —A. The prog

works verbatim for the present case.
LEmMA 3.3. C¥(8) is dense in the Hilbert space H 5(Q).
Thus we can extend (3.2)-(3.4) by continuity.
Lemma 3.4. (i) The first Green formula in the form

J FfTydx=0 forall fe L,{£1).
Y]

Thus Ty =0 whence x = yo Ty =0. From (3.9) now follows
(i, yor)y =0 for all pc HY{Q)

3.6 5Pu dx = @y - Yo I
(36) L e alth ©) = (7t Y0 which implies s =0 because of the surjectivity of

holds for all we HLY((Y), ve H'(Y). Yo: H'(§)) = HX(D). O

ii) The second Gre la in the f . . . .
(i) een formula in the form _ The continuity of the simple layer potential operator, Theorem 1(i) and (iii}, will

'f How from an extension of Gagliardo’s Trace Lemma, which seems to be new.

3.7 uP'v— =¥y, -
(3.7 Jﬂ (uP"v —vPu} dx = (¥it, yov} = {y10, yott) LemMA 3.6. Forse(3,3) the trace map

holds for all u, ve HL(QY). Here we define, corresponding to the definition of 4;: Yor > yott = |t Hig(R")» H"VHT) s continuous.

" This result for s=%, from which the whole range se(1,2] would foliow by
interpolation, is claimed by Jerison and Kenig [18]. However, there seems to be no
proof available. The proof of Lemma 3. 6 is given at the end of § 4.

. The last tool we need is Nedas’ result on the boundary regularity for the Dirichlet
and Neumann problems. :

S Lemma 3.7. For oel~},31, the mapping v,T: H"'z“’(l)
tinuous, and y,Toe H Y2"°(I') implies vc HY*"(T).
 Remarks. (i) Here the result for ¢ <0 means, as above, the existence of a con-
tinuous extension of the map defined for o =

. (n) Neéas [23] showed that solutions of the Dirichlet problem with Dirichlet data
in HY{I') have their Neumann data (i.e., conormal derivatives Jin L,(1") and conversely.
This is proved by applying an identity of Rellich, generalized to arbitrary second order
equations by Payne and Weinberger. Thus it uses only partial integration and is
completely elementary. The same argument has been used by Jerison dnd Kenig
[16],[17] and Verchota [27} [21]. Having thus proved the result for o =4, Netas
deduces the result for o= —3 from a duality argument. The whole range v ¢ [— 1.9
then clearly follows by interpolation.

n
Y= U= ) mbyyeut
P

(iti) The representation formula in the form
(38) () =G HMGx ), [yuD -~ Tl Glx ) (xeR\D)

holds for all uc L{R"}with ulye H'(Q), g€ Hln (1), and f= Pulgr € Ly(R")::
The proof is immediate if we keep in mind that HL = HL() and that y, remains
the same, whether defined from P or from P’. For (3.8) we need only (3.7) and the.
representation formula (3.4) for a smooth domain, let us say a small ball enclosin
the point x.
The following result will be needed in the proof of the jump relations ( Lemma 4. 1) .
Lemma 3.5, The trace map

Ry s con-

(Yo, Y1) 1@ —={yo0, V1)
maps Coome{R") onio a dense subspace of H*(F)x H VX(T).
Proof. Assume that for some (x, ¢)e HY*(F)x H V(1) there holds
(3'9) ’ (X; 7!9’) = (lrbs 70@) . for all Pe C::omp(R"

We have to show that y = =0.
Let Ty € HL({}) be the soiutmn of the Dirichlet probiem (see Lemma 3.1)

P°Ty=0 inQ, YoTx = x.

For arbitrary fe L,(Q) let §fc HE(£1) be the unique weak solution of the Dirichlet
problem

4. The proofs.
_ Proof of Theorem 1 (i) and (iii). By definition (2.5) we can write the simple layer
potential as

©{4.1) Ky=Ge vy,

 where v} is the adjoint of the trace map 7y,. By Lemma 3.6 we find that yo: H™"2(1') »
H imp(R") is continuous for s € (3,9). The operator G is a pseudodifferential operator
of order —2 on R", mapping H5(R") > H,.t"(R") continuously for any s € R. Thus
Theorem 1{1) fo!Eows The continuity of the operator A= ngU then follows by a second
" application of Lemma 3.6. [I
: Remark. If instead of Lemma 3.6, we use only the classical result (2.1), we find
" for theorem 1{i) only a range o e[0,}), and for (iii) only o =0 remains.

Next we use the representation formula (3.8) in order to write the double layer
potential in terms of the simple fayer potential. Writing (3.8) for a solution of the

PUSf=f inQ,  ySf=0.
The second Green formula (3.7) for the operator P°= P% gives

;S; =AYl Yo A1 f
(3.10) S X = (nSE v Ty —{n Ty, voSf)

= J (Sf- P"Tx— P°Sf- Tx) dx = ~J STy dx.
£ 11
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On the other hand, the definition of K, gives u = K,v = G(y|v), where the compactly

Dirichlet problem u=Tve H,(Q) for ve H'X(I"), we obtain To=—K,v+K,7, T'u: (
' :supported distribution on R, y{v is defined by

hence

(4.2) Ki=(-1+ Ky T. {(v'v, X>:_[ va,xds=(v, y,x) forall ye Ch,,(R").
1"

This immediately implies that  Thus Pu= v}, implying
(4.3) Kt HY*{I)» H'Y(Q)) is continuous. :
(4.7) J uP'e dx = (Pu, @) = (v, 1)

Thus, using (2.1) and Lemma 3.2, we obtain all statements of Theorem 1 for o = 0"-- 5 &
(i.e., in the “energy norm™). :

This will suffice to prove Theorem 2. The remaining cases of Theorem 1 wﬂl b
shown together with Theorem 3.

Now we prove jump relations for the layer potentials. We use the notation’
introduced above Vi

'.(:Zomparison of {4.6) and (4.7) gives

(48) (w=Lyol, vig)= (5141, yog) for all g€ Cpy(R").

-'_.Finally we apply Lemma 3.5 which allows us to infef from (4.8):
v—{youl=0=[ul ]

Proof of Theorem 2. Choose ve H V*(T'} and define u = —K,v. Then according

[yul= ysla}—w(ula) - for j=0,1.
' .to Lemma 4.1, we have the jump relations

LeMmma 4.1,

' : (4.9) [you]=0; hence yolulg) = —Av = yo{ut]o), and [y u} =0
[voKotb]=0, [y Kepl=— for e H VD), ! e ‘

rveKiwl=v,  [7:K0]=0  forve HAT).

Next we choose y e Cg,(R"} with y =1 on a neighborhood of {} and define u,=
U, upt= X“fu
Next we add the first Green formula (3.6) for u = v = u, and its counterpart for

Proof. Let ¢re H VX(I) and u = Ko € H|,(R"). The equality vo(ulo) = yoluin): 0 for u = v =u, and obtain using (4.9)

follows from the definition of y,. From (4.1) we obtain Pu = vy)4, if we apply P in the

distributional sense to . For any test function ¢ € Cn,(R") we thus obtain : '_ (4.10) Do (uy, 1)+ Pl tts, ) ;J 0 Pus dx = ([ yu), You) = (v, Ap).
: o

.Here ®g- is defined in accordance with (2.3). -

Equation (4.10) now allows us to transfer the Garding inequality for the operator

P, which we assumed to hold, to the Gérding inequality on the boundary for the
operator A, '

5 The term Ll i, Pu, dx gives risetoa C()I‘deCt bilinear form in ve H

(4.4) J uPlpdx=(Pu, @)= (yoh, ¢) = (tl_', Yog):

On the other hand, the second Green formula (3.7) gives

Y21 because

j uP'e dx 3(7?(”Ix1): Yo@) — (Y9, Yoli).
o

to C° (Q 3. F:om the continuity of the trace mappmg fyk (Lemmd 3. 2) we obiain an

The corresponding formula for £}° is " estimate

loll% ey = lyits = you -2 _ .
(4.11) = C(JJuy e+ uz“%-gt(;;n)—!— | Pus| f_,zmyk ||Pu2|§i2my)),

Here on the right-hand side, Pu, vanishes and || Pu,| 7<) is a compact term.

Finally, the principal part of the right-hand side of (4.11) can be estimated from
above up to compact terms by the lefi-hand side of {4.10) due to Garding's inequality
{2.4) which we assumed to hold. Thus (2.9} is proved.

In order to prove the strong ellipticity of the operator D, i.e., estimate (2.10), we
proceed analogously,

For ve H *(I) we define u= K,v. Then we find the j jump relations

f uP'p dx = —(Fi(u o), yoe) +{vi0, you).
[t :

Adding both, we obtain with [vou]={vel=[Fel=0

(4.5) J uP'@ dx = ~([Fiul, voe).
R

Comparison of (4.4) and (4. 5) gives {ylu}w ¢, and from [y,u]=0 follows [y,u]=
Pyiul=— -
In order to show thc jump relations for the double layer potential, we choose
ve H'/(I) and pe C%,,,(R") and define u= K,v. Then again the second Green
formuta gives '

(4.12) [you}: v and [Fu]=0; hencc ity = Y, = fDu,

where u; and u; are defined from u as above. Then again the first Green formula gives

(4.6) J uP'p dx = ~{[Frul, yoey+{{youl, vi@). (4.13) Doluy, )+ Ooe(u,, Hz)'“J 5 Puy dx = (Do, ).
: . =" 13"
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This time the trace lemma (2.1} implies Proof of Theorem 3. Let e H A1) and Age HV>*(I'). We show e

CH AT, The a priori estimate (2.11) then follows from the closed graph theorem.
Define u= K. Then we have A¢ = yu and o = —[y,u] by Lemma 4.1. Thus u

sotves in £ and Q° the Dirichlet problem with Dirichlet data Ay € HY?*“(T"). According

-to Lemma 3.7, the Neumann data, and hence ¢, are in H /277 ().

s Now if Bype HT'P7(T), then y,(uly)= Bpe HV*(T), so that also Adg =

wolulo)e HY?"(I') holds,

~ The remaining statements follow in a similar way using the double layer potential

and again Lemmas 3.7 and 4.1. [

: Proof of Lemma 3.6. The statement is local, so we may assume that the boundary
T is of the form

(4.14) el bz = bvors = yornlieeay = C e + 1wzl e @),

and again, (2.10) follows from (4.13) and (4.14) together with Garding’s inequality:
(2.4). O o

The derivation of convergence and stability for Galerkin approximation schemes’
from strong elfipticity is standard by now [13], [26], as are the approximation properties:
of the finite element function spaces [1],[2]; thus proofs of Theorems 4 and 5 need”
net be given here.

Next we show reguldrlty in the domain for the Dirichlet problem

Limma 42, For o ¢ (—%,3) the mapping T H'Y (M () is mmmuom

Proof. We choose a domain B containing €} in its interior, e.g., a large enou_g
ball. Let (= B\Q and T,:v+> = T,v be the solution operator of the Dirichlet
problem

T={(x",x,)eR"|x'eR"""; x, = $(x')}

~with a function YRR that is uniformly Lapqch:tz i.e., [lgrad .
For functions fe Cg,..(R") define

ol 2, )= f(x, 3+ (x)).
7__'_We then have to show an estimate for 1< 5<%
A{4.17) “fw( s O)HH*"‘”(H" H= C”f”h“(&") for all fe C::)mp(Rn)'

_:The problem is that in general for s> 1, f, ¢ H*(R") and therefore the usual trace
: igmma cannot be applied to f,. We show first that the mapping [/, leaves a certain
-anisotropic Sobolev space X° invariant, and then that in X* there holds the trace
estimate

(4'18) "f( “a OHIH‘ l”z{ﬂ"*'}g C fOf dﬁ fe Ccomp(Rn)'

For the definition of X" we identify a function f e CJ,,(R") with the C*(R"™")-valued
“function on R,

. L) <00,
Plu=0 inQ,, vyu=uv ul,z=0.
Now choose ve H'(I') and define '
u=Tr inf}, u=Te in{},.
Then the representation formula (3.8) applies and gives with f=0 and [y,u]=0
{4.15) ' ui~K0{"“)7,u]+JBB,,u(y)G(-,y) ds(y) in QUQ,.
a

Now we know from the boundary regularity result for the Dirichlet problem (Lemma:
3.7) that there are estimates

[ouut sl svzrocom 170 Tolly ey W Dol oo = Cllof e

even for oef[—},4]. Hence the contmmty of the simple layer potential operator :
Theorem 1(i} gives with {4.15) the desired estimate

ol st ey 2 Cloll e ' D".

Remark. The endpmnt result o=} was shown by Jerison and Kenig [16] usmg
Dahlberg’s estimates for the Poisson kernel [10]. '
LemmMa 4.3, For se (3,3) the trace map v, : Hu(0)— H*7VX(I') is continuous.
Proof. For ue HL(£2) and arbltmry ¢ e HY*(T), v=Te, we can apply the second ;
Green formuia (3.7) for the operator P’ to obtain '

) xﬂ}u—)f(.?xﬂ)‘
_Thus HY(R"}= H"(R; Ly(R"™)N Ly(R; HY(R"™")). We define
X' =H'R; LR NHNH(R; H'(R" ).

: Iff is the Fourier transform of f, we define the norm in X~ by

20

1A= J L JQFED+A+ED - AHEWNF(E, &) de de,.

{viu, @) = (yott, v To) — L P uTe dx. .(4-19) [ lx = Clif b

- If we denote by f (x', &) the Fouriertransform of £ with respect to the last variable,
we have

This can be written as _
(4.16) yi=yiTY vo— T'P".

The first member on the right-hand side is continuous from H*(£}) to H* **(I) due
to Lemmas 3.6 and 3.7. The second member is continuous from H*(Q) to H'(T") for
all s and £<<0 due to Lemma 4.2. [
As a corollary, Theorem 1(iv) follows from Theorem 1(i).
Proof of Theorem 1(ii), (v), and (vi). It suffices to show (ii). If we apply (4. 2),-
this follows from Lemmas 4.2, 4.3, and Theorem 1(1}. The proof of Theorem 1 1s-_
comptlete. G

|§f|£%1“{ﬂ; Hm" )™ J (1 + |§"D2T ”f( ‘.7_ En);l %—IT(R”_]) dfn'
Now we have ' '

(F) (', &) = e Fix £),

Hence

(4.20) ' Ife e Lo = kv, ame—yy  for all teR.
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For k=1, - -, n—1 we have
Gfy) (', £) = WO (ENN(X, )+ it (0, (x) € NT (X, £,).

This implies that

1Efo ) E e = @D gﬂ);ima- e+ & grad ll’”: @ nllf( f,,)llmnl__'-

Hence _ _
(4.21) Wl s retae = s, mre o+ ClIA I o=t

for all teR. ‘
Formulae (4.20) and (4.21} together imply the estimate

(4.22) ol = flxe forall sei.
Next we show (4.18). We use the fact that with
m(&, &)= (1H[ENT+A+]ENZ 7 (1+]ED
we have
J m(&, &) dg, = C1+[g)" 7 <0 for1=s <],
Hence using the Cauchy-Schwarz inequality we have

2

dt

|iﬂ,,(-,0)||%p—ww*J (1+|§’|>7"*“-l f Tae, 8 de,
B .

[ arer (] menen s

X (f m(&, &) (&, E)P dg,,) dg'

gy

ke

=C j m(&, ETE, £ dé,

This together with the estimates {4.22) and (4.19) gives the desired estimate (417). 0

5. Concluding remarks. (i) Along the same lines as presented here it is also
possible to easily deduce invertibility results for integral equations involving the

operators A, B, C, and D. Note that, for instance, by Theorem 2 the operators A and:

D are Fredholm operators of index 0 in the energy norm spaces. Thus if we assume

injectivity, which in turn can be inferred from positivity of the bilinear form @, we

obtain bijectivity. For the operator A this holds for the case of the Laplace equation

and the standard fundamental solution in dimension n 23 and for n =2 if the analytic -
capacity of T is different from one. By Theorem 3 and duality arguments, bijectivity. |
holds for the whole range of Sobolev spaces given in Theorem 1(ii). In this way we -
get results about the sofvability of the boundary value problems by means of the

boundary integral equations. Theorems 4 and 5 then are really statements about the

numerical solution of boundary value problems by means of the so-called boundary
element method [28]. In practice, this method is frequently used to solve (also mixed)

boundary value problems of three-dimensional linear elasticity on domains with corners

“117]
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and edges [25], [3]. For these problems, the present paper yields convergence proofs

'and asympfotic error estimates for Galerkin methods.

(it) 1If the domain is more regular than merely Lipschitz, e.g., a smooth image of

A polyhedran, then higher regularity results should be possible and they should improve

with higher dimension. For the Dirichlet problem this is well known, but for the

“boundary integral equations higher regularity has been studied, to the best of the

-author’s knowledge, only in the case of plane domains (see [6], [#], and the literature
quoted therein).
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. ON THE SHARPNESS OF WEYL'S ESTIMATES FOR EIGENVALUES
| OF SMOOTH KERNELS, H*

1. B. READEY

- Abstract. The estimate A, = o{1/n} obtained by H, Weyl (1912) for the nth largest in medulus eigenvalue
‘,;"._(,f any symmetric Predholm operator on L*[0, 1F with kernel in C'[0, 11* is shown to be best possible
1 the sense that for any increasing sequence a, — 20 there exist such operators whose nth ¢igenvalue is not
#{17/ae,). The construction of the counterexample makes use of Rudin-Shapiro polynomials. The corre-
s})'{)'ﬁding resuit for positive definite operators is proved with a simpler counterexample. The methods
“zenerafise to the case L0, 1]7(m 3) without further difficulty.

- Key words. eigenvalue, operator, kernel, asymptotics

AMS(MOS) subject classification. 45C

.~ 1. Introduction. If K{x, 1)=K{f,x}e La, b]* then

L

(TH)(x)= J- K(x, )f(t) dt

€L

“defines a compact symmetric operator T on the Hilbert space L*[a, b]. Such an operator
:-T..has a real null sequence (A,),., of eigenvalues which we can assume has been
“enumerated so that

Mlzluiz - =

I

H: Weyl showed in [4] that if K(x, 1)e C'[q, bF, i.c., K{x, 1) has continuous partial
derivatives, then A, = o{1/r*?). We showed in [1] that if K(x, t)e PDC'[q, bY’, ie.,
“K(x, 1) is positive definite and € C'[a, b}, then A, = o(1/n7).

- Similar results are true for operators of the form

i h

(T (x, ¥} =J J K{x,y, 1, u)f(t,u) dt du
where K(x,y, f,u) =K (1 u, %, y)e L’[a, b]* and f(1,u)e L’[a, b])’. The estimates are

Ay=0(1/n) for K(x,ytu)e C'la, b]* and A,=o(l/n"?) for K(x,y tu)e

PDC'[a, b]*. The proofs are similar to those for kernels in two variables.

. In{2] we considered the sharpness of the estimates for two variable kernels. Here

“we consider four variable kernels.

2. Double Fourier series. Any k(t, u)e L’[0, 1]* has a double Fourier series

[= ¢ A
o . 2ai{mitau)
L Z Conn €

17— O 3 v 0

_where

1ri
Conn = J’ J k(l, u} e""2nt(ml+nu) di du
0 Jo
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