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Abstract. We consider boundary value problems for elliptic systems in a domain complementary
to a smooth surface# with boundary & . The same boundary conditions are prescribed on both
sides of the surface# . The most important model behind this investigation is the crack problem
in three-dimensional linear elasticity (either isotropic or anisotropic): there the boundary conditions
are Neumann, i.e. tractions are prescribed on both faces of the crack sur#acéVe prove that the
singular functions appearing in the expansion of the solution along the crack &dgé have the

form r%“w(e) in local polar coordinates(r, 0) : the logarithmic shadow terms predicted by the
general theory do not appear. Moreover, we obtain that, for a smooth right hand side, the jump of the
displacement across the crack surface is the produat%ofwith a smooth vector function o7 .

We present two different, but complementing, approaches leading to these results, and providing
distinct generalizations. The first one is based on a Wiener-Hopf factorization of the pseudodifferen-
tial symbol on the surface# obtained after reduction of the boundary value problem. The condition
on the symbol which yields the absence of logarithmic terms into the solution of the boundary pseu-
dodifferential equation is a variant of the transmission condition. The asymptotics of the solution in
the full space is then deduced by a representation formula from the asymptotics of the solutién on
The second approach concerns directly the boundary value problem and is based on a closer look at
the Mellin symbol at each point of the crack edge The Mellin symbol is proved to act between
special subspaces of angular functions and the absence of logarithmic terms is the consequence of a
series of compatibility conditions, valid for any Agmon—-Douglis—Nirenberg system.
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Part A. Scope and principal results

A.1 THE CRACK DOMAIN AND THE BOUNDARY VALUE PROBLEM

Let .# be a boundeds™ orientable surface of codimensidnin R**!. We assume
that .# is a manifold with©> boundary& . We consider boundary value problems set in
the domain

Q.= R \%

For the equations dinear elasticity(Lamé or, more generally, anisotropic material law),
the solutions of such boundary value problems yield the stresses in the doraaimund. #
which represents erackwith front & . For the equations aglectromagnetisniHelmholtz
or Maxwell), the solutions represent the diffracted field aroundstineen. 7 .

We are going to set our problem and describe our results in a framework including such
problems, which is also covered by the hypotheses of our two methods.

We denote byx = (z1,...,2,.,) cartesian coordinates iR"™ and by 92 the partial
derivative 9y ... 907" . Let b be a homogeneous integrodifferential form of degteeith
constant coefficients acting oN component vectors , v € H!(Q)V

N N
blu,v) =) > / aly 02, 03y, de.
i=1 k=1|a}Jg]=1"®

Here u = (uy,...,uy), v = (vy,...,vy) and the coefficientmjjf are constant. We
assume that the forrh is coercive onH!(Q)" , i.e. that for some constants C > 0 there
holds

2 2
(Ha1) Yu e HY(Q)™, Reb(u,u) + Cllull g, > clully g, -

Moreover, we suppose thatis symmetric onH!(Q)" :

(Ha2) Vu, v € H(Q)Y, b(u,v) = b(v,u).
The partial differential operator associated with the bilinear férms

L= (L), with Lyg=— Y 07a5 o5
o], |8]=1

Hypotheses($)a1) and ($42) are satisfied for the Laplace equatio’v (= 1), for the
equations of general elasticity, including the anisotropic ca¥ejg equal to the dimension
of the space) and for equations of thermoelasticity and electroelasti¥€itis the dimension
of the space plug ).
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Since .# is orientable, we can define a smooth unit normal vector fieldn .# ,
which is unique if we choose the direction of the normal at some fixed point. After fixing
the field n we can fix the traces ; , taking v, opposite to the direction ofr (i.e. from
“above” if we considern as pointing upward) and taking_ in the direction ofn (i.e.
from “below”).

The Neumann operatdl’ associated withb and the normal fieldn is defined as

T = (Tj).,, with Tj = Z n’ a?,f v, nf=n. .. ng’rll

|el,Bl=1

j?k

Let B denote either the identity (which will be associated with the Dirichlet operator)
or the Neumann operatdf on .# . We consider solutions. € H'(2)" of the problem

Lu = f in Q
{7+Bu =0 on ., (A-1.1)

with, possibly, conditions at infinity (note that we may relax the conditioa H*(©2)" into
u € H'(Q N %Br)N forany R > 0, with #x the ball of center0 and radiusR). We
assume thatf is a > vector function onR™*! , with compact support.

A.2 STATE OF THE ART AND MOTIVATIONS

Due to the presence of the edge, the domain is highly non-smooth and this yields
strong singularities for the solutions of problem (A.1.1) along this edge. The general struc-
ture of these singularities is known, and addressed by many works, see [ChkDu2, CoDal,
Dal, DuWel, Grl, KozMaRo1, MaPI1, MaRo1]. The generic form of these singularities is

Q
e(2") Y M log?r e, (27, 6)

q=0

where 2’ represents coordinates #i, and (r, §) polar coordinates in the planes normal to
&, centered ons” .

The structure ofu in a neighborhood of the boundaw§j of .# is very important in
applications. For example, glasticity, it provides an essential tool for the investigation of
crack propagation in the quasi—static case. The propagation criterion is based on the stress
intensity factors (the coefficientg(#”’) of the leading terms in asymptotics) and on the
“polarization operator” (which involves the second terms in asymptotics), see [Nal].

Thus, it is important to know that the asymptotic expansion contains neither oscillatory
terms (i.e.non real exponentsa ) nor logarithmic terms (ielog? » with ¢ > 1). Concerning
oscillations, it is known that the solution of the crack problems never oscillates provided the
crack is inside an homogeneous material, even if the material is anisotropic, see [DuWel].
Concerning logarithms, although absence of logarithms in the leading terms was known long
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ago for isotropic materials [Gr2, NaPI1], the same was not proved for further terms, where
logarithms could appear as a shadow singularities.

The main scope of the present investigation is to establish that the structure of the solu-
tion w of the general problem (A.1.1) 8mplerthan the general theory would predict. The
main result can be summarized in one sentence:

“The edge asymptotics afi does not contain any logarithmic teringr

Still in the framework of elasticity, this was observed in the case of a curved crack in the
isotropic elastic planék? for the second term in the asymptotics in [WeSt1, Theorem 2.4]
and in the case of a half plane crad% in the anisotropic elastic spadg® in [Duwel,
Theorem 4.3]; For curved cracks the conjecture was first formulated by SARARDV.

Moreover, it has been shown [CoDa4, DuNal], that even in the very general framework
of Agmon-Douglis—Nirenberg systems with the same boundary conditions on both sides of
the crack.# , the principal part of the asymptoticsontains only powers of- with half-
integer exponents (ie\ = %+ k, k € Ny), and without anylog r term, see also [Koz1] for
scalar operators of orderm with Dirichlet condition. In this work, we prove that, in fact,
this simple structure extends to tbemplete asymptotics

The result that the whole asymptotics does not cont@in: terms is by no way obvious,
and is not an easy consequence of the simple structure of its principal part. Indeed, because
the exponents} + k of the whole asymptotics are all translated from each other by integers,
we should expectogr terms, due to the interaction between the non-principal terms in
the operator and the principal singularities (see, for example, [KozMaRo1, Remark 10.5.1],
where this interaction is explained).

A.3 REDUCTION TO THE CRACK SURFACE AND REPRESENTATION FORMULAS

One of the essential features of our crack-type boundary value problem (A.1.1)a#l that
informationon the singular behavior of is contained in anV -component vector function
¢ , defined on the crack surface by the jumpwfacross.#

¢ =[Cu] :=~,Cu—~_Cu

where C' denotes the complementing trace Bf, i.e. the Dirichlet trace ifB is Neumann
and C =T if B is Dirichlet. Of course, the asymptotics af will yield the asymptotics
of ¢. But even more important is thap can be directly obtained as the solution of a
pseudodifferential equation on? of the form

a(z,D,) ¢p(2) =g(2), 7 e .M, (A.3.1)

and analyzed in this respect. The relation between the boundary value problem (A.1.1) and
the pseudodifferential equation (A.3.1) will be fully explainediB.2. Let us only mention
that in the case of the Dirichlet problesn= V', whereV := ~,7 = v_7" is the trace of
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the single layer potential” associated with the operatdr, and in the case of the Neumann
problem,a = W ,whereW :=~+_. T2 = ~.T% is the Neumann trace of the double layer
potential Z . Then v can be reconstructed by the representation formula

Vo € Q, u(x) = Nf(x) + Z[ul(x) — V[Tu|(x), (A.3.2)

where [u] := y,u — v_u and [Tu] := 7. Tu — v_Tu denote the jumps of the functions
u(x) and Tu(x) across the surface# and N denotes the Newton (volume) potential.
Thus, the asymptotics oft depends only onp because the volume potential pawtf is
smooth andBu| =0 on .# .

Note that the coerciveness hypothe$is,;) ensures the Fredholm property of both
problems (A.1.1) and (A.3.1) in appropriate spaces.

Thus, two different approaches are available to us: either first study the soliitioh
equation (A.3.1), then derive the asymptoticswof or first study the solution: of problem
(A.1.1), then derive the asymptotics @f = [C'u] .

FIRST APPROACH The first approach is exposed in Part B: we develop the potential
operator technique based on the Wiener—Hopf factorization, according to the three main
following steps:

St. 1 The boundary value problem (A.1.1) is reduced to a pseudodifferential equation of type
(A.3.1) on the crack surface# by invoking the representation of solutions (A.3.2),
see§ B.2.

St. 2 Asymptotics of solutiongp of the pseudodifferential equation on the crack surface
are found using the Wiener—Hopf factorization, §&3 - B.7.

St. 3 By inserting the surface asymptotics into the representation formula (A.3.2), the full
spatial asymptotic expansion ef is derived, seé B.8.

G. EskIN was the first who applied the Wiener—Hopf factorization to investigations of
asymptotics, see [Es1]. The method received contributions by several authors [Bel, ChkDul,
ChkDu2, ChkDu3, CoStl, DuWel, DuNal]. In particular in [ChkDul] necessary and suffi-
cient conditions for the absence of logarithms in the principal part of the asymptotics were
found. Here we obtain criteria for the absence of logarithms in the whole asymptotics.

SECOND APPROACH The second approach is exposed in Part C: it relies on the classical
Mellin transform,cf [Ko1], and more recent representation formulas for the angular part of
singular functions¢f [CoDa2]. The main steps are:

St. 1 By separation of variables and Mellin transformrinthe problem is transformed into
systems of ordinary differential equations in the angular varid@blgith the parame-
ters 2’ and )\, the dual variable of-, see§ C.1.

St. 2 The solutions of these systems are represented by contour integrals around the unit
circle with theCayley symbolsf the principal part of the operator, s¢€.4.
St. 3 By the Cayley representation formulae, the condition of absence of logarithm is re-

duced to compatibility conditions between traces of a series of right hand sides in the
Mellin calculus, seg C.5.
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A.4 RESULTS

In order to state our results, let us introduceal coordinatesn a neighborhood of the
edge & which is the crack front.

Definiton A.4.1 (i) Let 2/ = (#4,...,2,_1) denote local coordinates i# .
(i) For #’ € &, let Il denote the normal plane t¢ containing #’. We take polar
coordinates(r, §) in II,, such thatr = 0 is the intersectiorll, N &, § = —x is
I1, N.# frombelow andd = = is 11, N.# from above.
(i) We sets,, =rcosf and 2,1 = rsinf. The n coordinates(#', 2-,) are local co-
ordinates in.# andthen+1 coordinatesz := (2’, #,,, #,,1) are local coordinates
in € in a neighborhood of’ .
(iv) The local cylindrical coordinates arex’, r,6) and we shall usé 2’ r,0) = 2 € .#
and (27,0,0) = 2" € &.
(v) The dual variables ofr = (27, 2, 27,41) are denoted by = (£, &, ns1) -
(vi) We denote byx: 2 — x the generic map of an atlas aw , and by 7,.(#) :=
[Dr(2)T]7t, the inverse of its Jacobian matrix.
[
From the combination of general edge asymptotics [MaPI1, MaRol, NaPI1], [Dal,
CoDal], and of the particular structure of the principal part for crack problems [DuWel,
CoDa4], we may derive that there holds the following general statemerifBs2eand C.2.

Proposition A.4.2
(i) Any solutionw of the boundary value problefd.1.1) with a smooth right hand sidgf
has the following asymptotic expansionas- 0 : For any integer K > 0

. K q(k) (k) )
u = A2 r2p (2, 0) + Zc?’q(%’)r?“k log?r 7,[)?”(%’,9) (A.4.1)

J
j=1 k=1 ¢=0 j=1

=2

+ ureg,K + Urem,K -

The coefficient&?, cf’q are €>(¢&’) functions depending ofi. The regular partu,es x
is a linear combination of terms of the fora{(2”’) p(2,,, 2 ,+1) , With polynomial p and
€= (&) coefficientc. The remaindens, o, ¢ satisfiesd’®u,em x = o(r¥-18+1/2) asr — 0
for any multi-index3 € Nyt . The 1/;? and ¢f’q are N -component vector functions in
&> (|-, ] x &) and depend only on the domaia and the operatorg L, B) .

(i) Any solution¢ = [Cu] of the pseudodifferential equati¢A.3.1) with a smooth right

hand sideg has the following asymptotic expansionas- 0 : For any integer K

K q(k)

¢ = r2d(2") + Z Zr%Jrk log?rd*1(2") + Drom K- (A.4.2)

k=1 q¢=0

Here v is the order of the pseudodifferential operatar. The d° and d*9 are N -
component vector functions if€>(&"). The remainderg,,,, , satisfies °,., x =
o(rK=1P+7/2) as r — 0 for any multi-index3 € N .
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Our main result in this paper is that there are no logarithmic terms at all in expansions
(A.4.1) and (A.4.2):

Theorem A.4.3
(i) Any solutionw of the boundary value problef\.1.1) with smooth right hand sidef
has the following asymptotic expansionas- 0 : For any integer K > 0

K
Zc 7"21p (2',0) + Z (o )r2+k1/1 (27,0) (A.4.3)
j=1 k=1 j=1
+ ureg,K + Urem,K -

The scalar coefficients} belong to 4> (&) and depend onf , while the IV -component
vector functionsw,b? depend only on the domai? and the operatorg L, B) .

(i) Any solution¢ = [Cu] of the pseudodifferential equatiqA.3.1) with smooth right
hand sideg has the following asymptotic expansionas- 0 : For any integer K > 0

¢ = r2d°(2") + Zr2+kdk ) + Prem.ic- (A.4.4)

The coefficients1® and d*¢ are N -component vector functions i (&) .

This result is proved in Parts B and C, in more general frameworks: In Part B, for a general
class of pseudo-differential equations with classical symbols satisfying a “continuity prop-
erty” which is a sort of variant of the transmission condition. In Part C, it is proved for a large
class of Agmon—-Douglis—Nirenberg systems with covering boundary conditions. Moreover
both approaches allow precise representation formulas for the “angular” vector functions
wf(%’, ) as linear combinations of simple trigonometric functions,&Be3 and C.7.

Because of the relatiop = [C'u] betweenu and ¢, it is quite simple to link the first
terms in expansions (A.4.3) and (A.4.4).

In the Neumann case, = Id and:

Zc (2 0)} :

7=1
where [¢(0)]  denotes the jumpp(r) — (—). In the Dirichlet caseC' = T', and let

r—1To(2”,0; r@r,é?g) + Ty (2")0, be the expression df’ in cylindrical coordinates. Then

there holds
N

d®(2") =Y (") [To(2",0; 3, 00)95(2",0)] .

j=1 "
Defining s9(2") € €>°(&) ® CN by

2 = [Pi(=, 9)} if C=1d,
sU2") = [To(0,27; 5 (%)1/)?(%’,0)L if =T,

)20
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we get the common relation
d’(2") =) (") s(2). (A.4.5)

The vectors.g?(z’) , 7 =1,..., N are independent of the right hand side &man a basis
of CV for each fixedz’. We will address in a forthcoming paper formulae and numerical
methods for computing the scalar coefficien$2") .

Conversely, as a consequence of the representation formula (A.3.2), we obtain the in-
verse relation between the coefficients involved in (A.4.5): all coefficiefits’) are de-
fined as a composition of some matrices with(# ') , see [ChkDu2].

A.5 MODULAR REPRESENTATION

The asymptotics (A.4.3) and (A.4.4) give the possibility of representingnd ¢ as
finite linear combination of non-smooth functions with smooth coefficients: As a straight-
forward consequence of (A.4.4), we obtain the following factorization of the degsity

Corollary A.5.1 Any solution¢ of the boundary pseudodifferential equati@a3.1) with
a smooth right hand sidg satisfies

r ¢ e €M)V, (A.5.1)

As a further consequence of the expansion (A.4.3), we can prove that a simple splitting
of u holds in local cylindrical coordinates. For this, we first introduge, a closed tubular
neighborhood of the edgé where the local cartesian coordinates are well defined. We may
take 77 as a set of the form

U ={(#" 2, 2ni1) ;7 <10, 2T €EY
Then we denote bﬁ? its expression in local cylindrical coordinates
qv/ = {(‘%/77‘70) ) 0 S r S To, RS [_71-777]7 35', < éa}

Note that we clearly distinguish the two facés= —r and 0 = 7 of .

Corollary A.5.2 Let u be any solution of the problef®.1.1) with a smooth right hand
side f and denote byt its expression in local cylindrical coordinatest(2”’, 2, 2,11) =
u(2’,r, 0). Thenu admits a splitting in two parts

(2’1, 0) = ao(2”,r,0) + 12 4 (27, r,0), (A.5.2)

v

where uy, and w; are €°°(% ) inthe variablesr, 6 and #”.
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Now, we may write (A.5.2) in local cartesian coordinates and obtain

1
w(2’ 2, Zng1) = uo(2', 20, 2n1) Fr2u (2, 20, 2 00). (A.5.3)

The partu, in (A.5.3) is in fact €>°(%) in the coordinates#’, #,,, 2,,.1) . Now we

may wonder if u, is also a¥> (%) function. This is not true. For example, for the
Laplace operator with Dirichlet boundary conditions we haye= ¢; sin %94—027’ sin %9+' x
Replacing the factor: by another function does not help. We need to sglitu; into new
parts. Again, when, = A andn = 2, we simply have

1

riuy =i (C2 - C2) +eo(C

Njw

Nt
I

Nt
~—

—C3) +as(C
with ¢ = re'? . Therefore
rruy = (3 (e + el s A o)+ C2er 4+ ol + (P - )

which means that/2u; can be written ag 2w/ + (2w}, with 4°°(%) functions «; and
ub . This result extends to the wider class of problems satisfying hypothgses and
($42) , provided a condition on the symbol of the interior operatarthe symbol§ — L(&)
of L isdefined so thaf. = L(D,) , where D, = i0, . We require that this symbol satisfies,

(9a3) V2’ €&, therootsT € C of det L(_7.(2)(0,1,7)) =0 aresimple

where we recallcf Definition A.4.1, that2’ stands for2 = (27,0,0) and (0,1, 7) is the
value of the dual variablg = (¢, &,, &.41) - Note that L(_7,.(27) &) is the principal part
of the symbol of the operatof, written in local variables(z ; §) .

Theorem A.5.3 If hypotheses($41) — ($a3) are satisfied, then there exi®tN scalar
singular functionsa, = r'/2p,(2',0) for £ = 1,... 2N, with o, € €<(& x [~7, 7))
such that any solution: of the problen{A.1.1) with smooth right hand sidgf can be split
as follows

U = Ug+oru]+ -+ oanthy, (A.5.4)

whereug, u}, ..., ub, are (% )—smooth vector functions in local cartesian variables.



Part B. The Wiener—Hopf approach

In this part we investigate the asymptotics of solutions of a class of Pseudo-Differential
Equations ¥ DE) on the manifold.# ; we also study how these asymptotics are transformed
by representation formulas and how they give back asymptotics for our class of Boundary
Value Problems (BVP).

In § B.1, we fix notations for more or less classical Sobolev and Bessel potential spaces,
including anisotropic Bessel potential spaces.

In §B.2, we recall how the boundary value problem (A.1.1) with the Dirichlet or Neu-
mann boundary conditions can be reduced toW¥ (A.3.1) on the manifold.# . The
feedback is governed by the representation formulas which reconstruct the solution of the
BVP in 2 from the solution of the!DE on .7 .

In § B.3, we introduce a large class of classi#ddE on .# and recall from [ChkDul,
Es1] the general form of asymptotics of the solutiemof such equations near the boundary
& of .« .

In § B.4, we concentrate our attention on a sub-class of clas$ib&l where the full
symbol satisfies a special continuity condition, denatéd, ) , with respect to the conormal
variable and state the main result of Part B: the asymptotics of the solutions do not contain
any logarithmic term (see Theorem B.4.1). We prove thatitbd (A.3.1) obtained from
the BVP (A.1.1) belong to our sub-classWwDE.

In § B.5, before proving the main theorem in its full general framework, we investigate
the simpler situation o$calar VDO in dimension1. We find a necessary and sufficient
condition, denoted $p5) for the absence of logarithms from the whole asymptotics: the
continuity condition($4) we exhibit in the general situation of dimensianfor systems
appears as a particular case(6fgs) .

In § B.6, we give useful auxiliary propositions relatingd®0O in one variable acting on
functions of n variables and iy B.7, we prove the main Theorem B.4.1.

In §B.8, relying on results from [ChkDu2], we give, as a consequence of the simple
structure of the solutiongp of WDE, the form of vector functionsu defined in 2 by
a certain type of representation formula acting en We prove that the representation
formulae (A.3.2) belong to this type. As a result we have the statement of Theorem A.4.3.

11
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B.1 SOBOLEV AND BESSEL POTENTIAL SPACES

B.1.A STANDARD SPACES

We first recall the definition of the Fourier transform and Sobolev spaces.

Let . (R"™!) denote the Schwartz space of all rapidly decreasing functions/&ii"+1)
the dual space of tempered distributions. koe . (R"*1) let

ﬂwozﬁ;w@w:/ YV o(y)dy,  EeR™

Rn+l

denote its Fourier transform ii"*' . The inverse Fourier transforn?,! in R"*! is

defined as
1

Fe o) = e [ U a6

We denote by.#,_.. and Z' the Fourier and inverse Fourier transformsR# .

—T

The Sobolev spacél*(R"™!) is defined as the subspace of'(R"*!) endowed with
the norm

2 s
oy = [+ IER) 1 Fmer(©F a6

For an integers = m € Ny an equivalent norm on the spagg’(R""!) is

(X [ osewra)”

la|<m

For a domainQ2 c R™™! with a smooth boundary(¢ can be, for example, one of the
half-spaceR’;"' := R" x R* ), two families of spaces can be defined:

() The subspacéS(Q) C H*(R"*!) of the distributionsy which are supported in-
side Q. The extension by outside Q of such a distribution yields an element in
HS(R™ 1) .

(i) The quotient spacdl*(Q2) := H*(R™™)/H*(Q°), where Q¢ := R\ Q is the
complementary domain. The spat¢¥({2) can also be interpreted as the space of
restrictionspge of functions ¢ € H*(R™*!). The space is endowed with the factor—
norm, i.e. the minimal norm of all possible extensiongko™ .

By H*(Q)Y, H*(Q)" , we will denote the spaces d¥ —vector functions.

For a surface# c R™*' of codimensionl , with a smooth boundary.# , the spaces
H*(.#) and H*(.#) are defined in a standard way, involving some fixed finite covering
{Uj}j:1 of .# , appropriate diffeomorphisms;; : U; — V; C R’ and partition of a
unity subordinate to the fixed covering, see, e.g. [Es1, Hrl].
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B.1.B ANISOTROPIC WEIGHTED SPACES

Besides the above classical spaces, we need a 3-parameter class of anisotropic Sobolev
spaces with weight. The weight appears as integer powers of one particular coordinate.
We first define these spaces &%, then onR"} , finally on .# .

Let u, s € R and x € Ny. We denote byH**)-*(R") the Hilbert space of distribu-
tions « with finite norm

2
HUJHH(M s), ku Rn) Z H S+k kuH Rn = Z H S+k f[DI’Zu]HLQ(Rn)

where x = (2/,x,) are cartesian coordinates iR", D, := i0,, £ = (¢,&,) are the
corresponding dual variables,

(€)= 1+ gz,

and where
(D)1= Zg L )V Fyers (D) = T T

3 E—a

are the Bessel potential operators. For integers € Ny, we have the equivalent norm

DD oo akull,

k=0 o/eN"—1 BEN™
[/ |[<p |B|<S+k

We define the Frechet spaces

H(oo,s),/-e(Rn) — ﬂ H(u,s),n(Rn) and H(oo s . m H 00,3) Rn

peN keN

The functions in these spaces dié globally on R™ and > in R\ (R""! x {0}).

On the half-spac®? = R"! xR, , we defineH"**(R") as the space of restrictions

to R? of distributions in H**>=(R"). The spaceH*)*(R") denotes the subspace of
H ) *(R") of distributions with support irR™ .

The spacedi®)<(.#) and H9(.#) for a smooth compact manifold# with a
smooth boundary).# are defined in a standard way, involving some fixed finite covering
of .# , appropriate diffeomorphisms and partition of a unity subordinate to the covering, so
that the particular coordinate, corresponds to the distance to# in .# , see [ChkDul,
§1.1].

B.2 REDUCTION TO THE BOUNDARY

In this section, we explain in more detail the way from BVP (A.1.1VE (A.3.1) and
back.
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We start from the first Green formula for all € H?(Q)Y and v € H}(Q)" :

b(u,v) = —/ Lu-vdy +/ v (Tu) - v, 0 do — / v_(Tu)-v.vdo. (B.2.1)
Q (//4

M

Under the symmetry hypothesi$),2) we have the simplified second Green formula for all
u,v € H2(Q)N

/ (w-Lv — Lu-v) dy = / (%u -7 (Tw) —y-u - y_(Tw)
— 7 (Tu) - v, o+v_(Tu) - 7,6) do. (B.2.2)
Let us recall a construction for the fundamental matrix of the operatdy.. ), i.e. the
distribution £ such that
Ve e R"™ | L(D,)Fi(x) =d6(x)ld, F,ec.7'(R"), (B.2.3)
where Id is the identity matrix and is the Dirac distribution ad
Vo € €(R™),  (5,¢9) = ¢(0).

After choosing inR"*! a system of coordinateg = (z,x,,1) € R® x R which partic-
ularizes one coordinate, the fundamental matrix of equation (B.2.3) can be written in the
following form, see [Hr1]:

1 ; ,
Fr(x) = 347{_1% [% /;/ LY m)e ™nidr | if Fany >0 (B.2.4)
+

where ({,7) € R" x R represents the dual variables @f, z,,,1) . The contour.Z, (.Z_)

is situated in the upper (in the lower) complex half-plaie := R ¢ iR, (in C_ :=

R @ /R_) and is oriented counterclockwise (clockwise, respectively) encircling all roots of
the polynomialdet L(&, 7) with respect to the variable in the corresponding half—planes
TeCy.

Taking as test function®(x) the columns of the matri¥;,(z — y) and inserting the
equationL(D,)u = f into the second Green formula (B.2.2), we easily obtain a represen-
tation formula for anyu satisfying the equatior(Dg)u = f :

Ve € Q, u(x) = Nf(x) + Z[ul(x) — V[Tu|(x), (B.2.5)

where

Veed,  [ul(#)=ru(r) -qu(r), [Tul(#):=vTu(z) -y Tu(z)
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denote the jumps of the functions(2) and T'u(2) across the surface# ; the opera-
tors V', 2 and N are the well-known single layer, double layer and volume (Newton)
potentials:

V(@) = //{FL<m—a>¢<o>do, 7 () = / (TFL) (o — 2)b(0)do, (B.2.6)

M

Nf@ = [ (A @-nfwdy. ecn, (8.2.7)

Here «/* := /T denotes the hermitian conjugate of the mateix.

Solving the boundary value problem (A.1.1) with the help of the representation formula
(B.2.5) we have to find only one density, either = [u] € H%(///) for the Neumann
problem orvy = [Tu] € IN{‘%(//Z) for the Dirichlet problem (due to the boundary condi-
tions in (B.2.5) the other density vanishes off ). Invoking the well-known jump relations
(“Plemelj formulae”) (see, e.g., [KuGeBaBul, ChPi]) we get the following pseudodifferen-
tial equations on the crack surface (compare with (A.3.1))

W(z,Dy)p(2)=—TNf(2), =»e€., for Neumann, (B.2.8)
V(z,Dy)p(2) =, Nf(2), PRSI/ for Dirichlet. (B.2.9)

Here W(#,D,) =~.TZ = v.TZ is the trace of the composition of the Neumann oper-
ator with the double layer potential and is a hypersingular operator, understood as a pseudo-
differential operator of order 1V (2, D, ) = 7,7 = ~_7  is the trace of the single layer
potential on the surface# and is a weakly singular integral operator (pseudodifferential
operator of order—1).

Thus, by solving the equation (B.2.8) or (B.2.9), and inserting the solution into the rep-
resentation formula

u(x) =Nf(x)+ Zp(x), =z,  for Neumann, (B.2.10)
u(x) = Nf(x)— V¢Y(x), xecQ, forDirichlet, (B.2.11)

we obtain a solution of the boundary value problem (A.1.1).

B.3 ASYMPTOTICS OF SOLUTIONS OF WDE — A GENERAL CASE

In this section we recall general results on asymptotics of solutiob®t on a manifold
with smooth boundary from [Es1, ChkDul] obtained by the Wiener—Hopf approach.

Let us consider a classic& x N matrix symbola(«;¢) of order v € R, defined on
the cotangent manifoldZ*.# to .# C R"*!:

ae SHT )N = a(#r,&) =a(r,8) fa(2, )+,
VA> 0, Vo €., VEER, aj(x,\) = N a,(x, &), (B.3.1)
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where a;(z,0) are ¥ -smooth on the bundle of cotangent unit sphergsx S*~! C
T*.# (see [Hrl] and [ChkDul§1.2]).

For any Sobolev exponent € R, the correspondingV x N system ofUDE on .#
with symbol a(#;¢) is continuous fromH*(.# )" into H*~"(.# )™ . We are interested in
the structure of anyp satisfying for somes € R and an integer’’ > 0:

¢ € B°(.#)Y suchthat a(2;D,)p =g, with geH " Lz)N. (B.3.2)
Further we suppose that the principal homogeneous@grt; &) , which we will also
denote bya,, (2 ¢) is elliptic, which reads
($81) det ap(2;€) #0, 2 €.#, &eR"\{0}.

The following N x N matrix plays a fundamental role in the structure of the solutions
¢ satisfying (B.3.2)

b(2") = [a,(27,0;0,+1)] ' a,(2',0;0,-1), 2'€& (B.3.3)

where we recall that> := (27, 2,) € .# are the local and{ = (¢,¢,) are the dual
coordinates, with2’ € & = 9.# the edge variable. Note that for gl € R"!:

(27,030, £1) = lim [t ™ap(2,0;¢,1).

Forany 2’ € &, let us denote by
AM(2"), ..., n(2") the eigenvalues of b(#”),

where we repeat each eigenvalue according talgebraicmultiplicity.

The assumption which will ensure the absence of logarithms in the principal term of the
asymptotics of thep satisfying (B.3.2) is thab is diagonalizablen each point2’ in &,
and that the eigenvalues a#>(&’) , which is written as:

V2’ € &, 3 anumbering of eigenvalues and an invertible matiX 2”):
(92) b(#') = %(zx’)(diag{)\l(%’), AM%’)})%*(%)

2= (2'), 2= N(2) are €°(8).
We need one more assumption on the eigenvaluds ef ) : let us set

6;(#') = (2mi) " tlog \j(2”), j=1,...,N.
We assume that
dne(-1,1), Fag>~(&) determination of thé; (")

(Bp2) { suchthat V2’ € &, n—3 <Red;(2’) <n+3.

While locally a consequence dffg.) , this assumption has to be required to hold globally
on & .

The following result, see [DuSaWel, Lemma A.6], provides a general framework where
assumptiong$Hp2) and (Hp3) are satisfied.
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Lemma B.3.1 If forany 2’ € & the two matricesa,, (#”,0;0, +1) in (B.3.3)are positive
definite, then the matridb(2”) is diagonalizable with unitary? (2”) , its eigenvalues are
real, which means that the numbeig 2”’) can be chosen purely imaginary:

5, €E™(&), Redj(»’)=0 forall j=1,-- N. (B.3.4)

The main result in this section is the asymptotic structure of solutiwnef (B.3.2),
whose first terndoes not contain logarithm&Ve recall that(2’,r) = (2',r, =) denotes
the local cylindrical coordinate system o in a closed tubular neighborhood of the edge
& = 0.4 (see Definition A.4.1).

Theorem B.3.2 (see [ChkDul] and [Es1, Ch.26])We assume hypothes€$g;), (Hp2)
and ($p3) . We choose

e adetermination ofthe,, j=1,..., N,

e areal Sobolev exponent,
such that there holds for alk’ € &

Vj=1,....N, g+Re5j(%') > 1, (B.3.5)
and ) )
Vj=1,...,N, —g+s—§<Redj(9f')<—g+s+§. (B.3.6)

Moreover letg € ﬁs(//l)N be a solution of the equatioa(#; D, )¢ = g where the right
hand sideg is €>(.#)" . Then, for any integedk > 0 the solution¢ has the following
asymptotic expansion

D

K-1  o(k)
o2, 1) = (27) ratAED [ Y+ Y Y dRa(2) log?r
k=1

+ Gromic(2.7), P € HTE ()N (B.3.7)

Q
Il
=)

with N —vector coefficientsd®, d*? in (&)Y . Here, the vectorA is defined as
(61,---,0x)" andforanyu € R, r*+2 is understood as the diagona&f x N matrix

riTA = diag { rhroL 7’“+5N} . (B.3.8)

Remark B.3.3 (i) In [Es1, Ch.26], itis proved that the asymptoticsg@fhas no logarithmic
term in its leading summand, and in [ChkDu1l] the more explicit formula (B.3.7) is proved.

(i) Itis possible to extend hypothesi$)g,) to certain cases wherk(2”) is not diagonal-
izable: then we assume that we have a canonio&bAN decomposition with &> (&)
dependence. This implies in particular that the geometrical multiplicities are constant along
& . Thenitis proved in [ChkDul] that there holds a decomposition like (B.3.7), with explicit
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logarithmic terms in the leading summand of the asymptotics. This means that the condition
($B2) is necessary and sufficient so that logarithms are absent in the leading summand of
the asymptotic of a solution (B.3.7).

(i) It is possible to get the first term of the asymptotic expansion without the smoothness
properties onz” and ¢, , but the further terms are not available so far, see [ChkDulh

B.4 ASYMPTOTICS OF WDE — SYMBOLS WITH CONTINUITY PROPERTY

Here are the conditions which ensure that logarithms disappear from the entire asymp-
totics (B.3.7). These conditions apply to thél symbol ijo a;(2', 2,;&,&):

Vo' € & VieN,, Vo' €N ' meN,,
($B4)

(0,08'a;)(+7,0:0,—1) = (=1)"* (97 9ga;)(+",0:0,+1) .
We note that the above condition implies that

VB ENy, (9208 a;)(2",0;0,—1) = (=1)"1(920¢ a;)(+7,0;0,+1) . (B.4.1)
On the other hand, concerning the principal symbol, the above condition implies that
an(2',0;0,—1) = ay(2',0;0,+1),

whence for allz” € &, b(2') = Id. Thus condition($g4) implies conditions($z,) and
(983) -

The main result about asymptotics without logarithmic terms within the Wiener—Hopf
approach are formulated in Theorem B.4.1.

Theorem B.4.1 Let a(#;¢) be a classical symbdB.3.1) of order » > —2 and let its
homogeneous componentg(+; &), a;(#;¢), ... satisfy the continuity property$g,) on
the boundary&” . Let s be a Sobolev exponent such that

v 1 v 1

— = — 4= B.4.2
2 2575373 (8.4.2)
Let ¢ € ﬁs(//l)N be a solution of the equatioa(#; D, )¢ = g where the right hand side
g is €>(.z)N 1) the solution has the following asymptotic expansion for any integer
K >0

K-1
¢ = rEX A (#) + Prmic s Promic € ()Y, (B-4.3)
k=0
where theN —vectorsd”, k = 0,1, ... belong to (&) .

1 If the requirementg € (. )N is relaxed intog € H(>>s=+K)x(_z )N for an integer K > 0 and
k > K , we still obtain the asymptotics (B.4.3) for the same valkie
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We postpone the proof of the theorem ugts.7.

The assumptions of Theorem B.4.1 hold for the bound&adf (B.2.8) and (B.2.9) cor-
responding to the BVP (A.1.1). This follows from the following theorem.

Theorem B.4.2 The symbols of the bounda®yDE (B.2.8) of order » = 1 and(B.2.9) of
order v = —1 are positive definite and satisfy the continuity prope$s,) . Moreover, for
any volume dataf € €;°(R""!), the right hand sides of equatio(B.2.8)and(B.2.9)are

in Cﬁoj(//l)N , and equation$B.2.8)and(B.2.9) have unique solutiong € ﬁs(//l)N and
¥ € H71(L#)N |, respectively, for any € (0,1). Thus asymptoticéB.4.3) hold for these
solutions.

Proof. We quote [ChkDul, CoStl, DuNaShl, DuWel] for the proofs of positive defi-
niteness of the symbols and unique solvability (also in more general spaceBofB.2.8)
and (B.2.9) and concentrate on the proof of the continuity property (B.4.1).

In [ChkDul, Example 1.17] it is proved that the symbols of both equations (B.2.8) and
(B.2.9) are classicdP) and the components of the asymptotic representation of the symbols
have the following form

W(z;8) = Wol;:8) + Wiles58) + -+ Wi(238) + -+,
V(2:8) = Vo(238) + Va(258) + -+ V(238 + -+,

where the homogeneous componelits(2;¢) and V;(2;¢) (of orders1 —j and —1 —j
respectively) are generated by an explicit symioland v respectively

Wiz 6) = Y ags(x) PoEw(2:€), (B.4.4)
la|—|B] =35>0
20<«

Vi(258) = ) aas(2)Pogv(#;), (B.4.5)
laf—|8] =420
26<a
where the sums are finite singe| — |5| = j and 28 < « imply 2|5| < |o| < 2nj, and
where the matrices,, () have €>(.#) coefficients.
The generating symbols/, v are defined forz € .# and ¢ € R" as follows — the
contour .7, is the same as in (B.2.4) and the Jacobigh(2") as in Definition A.4.1(vi):

w(z;§) = L T(2; Zu(2) (& 7)) LT Fu(2) (S,T))T (B.4.6)
T(z; 7u(#) (7)) dr
v(z;§) = /_OO LN Zu(2) (& 7))dT. (B.4.7)

(2) In [ChkDu1, Example 1.17] is considered the restriction @@0on R*t! with a classical symbol onto
the smooth surface# of codimension 1 and proved that the restricted operator is again a clagsi|
explicit formulae for the components of the asymptotic expansion of the symbol are indicated.
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In particular, the principal symbol8/,, (2 &) = Wy(2;¢) and V(27 &) = Vo(2;€) both
have the following coefficient

IR I C))
200(#) = 21 det Dae(2)’

whereT',.(2) is the Gram determinant of the local coordinate diffeomorphisms

Since the elliptic differential operatat(D,) in (A.1.1) is supposed to deomogeneous
of degree2, its symbol L(&, &,+1) is even

VE = (ga Sn-f—l) € Rn+1’ L(_€7 _gn-i-l) = L<€7§n+1)'

As a consequence, with the change of variable> —7 in integrals (B.4.6) and (B.4.7), we
find that the generating symbois and w are even?®)

Vo e, YEER™ v(ie, =€) =v(z,§ and w(z,—&) =w(2¢§).

Therefore, as a consequence of formulas (B.4.6) and (B.4.7), ferall.# ,forall A € R,
for all integersj, m = 0, 1,... and all multiindiceso’ € Ni~!, there holds

(07 95 W;)(27,050,-X) = (=17l an 95’ W;)(27,050,N),

(05,08 Vi)(#',050,=0) = (=175, 08'V;)(+7,050,0). .

B.5 WDE IN DIMENSION 1

Before we start the proof of the main theorem B.4.1, we want to explain the principal
mechanism responsible for the absence of logarithmic terms by presenting the resultin a very
simple situation, namely the case of a scalar elliptic pseudodifferential equation with constant
coefficients on the half-lin&, . This simple one-dimensional situation allows us to stay free
of many of the technical difficulties of the higher-dimensional case and to concentrate on the
essential feature, namely the role of the continuity condition for the asymptotic expansion of
the symbol. We can show in this case that a natural generalization of this condition is not
only sufficient, but also necessary for the absence of logarithmic terms in the asymptotics of
the solution. The class of operators considered here can be larger than the one obtained from
the 2D crack problem.

We need the following well-known Fourier transform of distributions supported in the
positive half-line, see for instance [Es1]. By, and xy_ we denote the characteristic func-
tions of R, and R_, respectively.

LemmaB.5.1 (i) ﬁH(M(t) t“‘le‘”> = D(p)e 3 (A +ir) ™", 7> 0

(3) For this, we use in particular that any contour integral of the integrand in (B.4.6) surrounding all the roots
7 of det L(_#.(2') (¢, 7)) = 0, is zero, which allows to replace in (B.4.6¢; by .Z_.
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(i) Z_. (X+(t) logtt“_le_”) = (A +i7)(clog(A +iT) + d)
with ¢ = —I'(u) e'2* and d = %(I‘(u) e'zh).

Another crucial result concerns the additive decomposition of homogeneous distribu-
tions into “plus” and “minus” terms.

LemmaB.5.2Leta’, a=, vy € C. Then
() If v & Z, we have the representation

a —e gt a” —e™a*

(@™ X () +ax- (1)) [t =

ety — e—imy
(i) ~ € Z, we have the representation

(=1)%a” —a™*

o <(t +40)" log(t + 0)

— (t — i0)" log(t — z’O)).

(a* x4 () + a7 (D) [H]7 = a* (¢ 4i0)7 +

PrRoOE It suffices to use the identities
(t1i0)" = X, ()t +x_(t) e ™t
log(t£i0) = x.(¢t) logt+ x_(t)(log|t|Lir). .

Let a € ¥°°(R;C) be a classical elliptic symbol of order € R with constant coef-
ficients, i.e.a(¢) # 0 forall £ € R, and a has an asymptotic expansion in homogeneous
terms

a(&) ~ iaj(f) with Vj €N, Vt >0, V€ € R, a;(t€) =" 7a;(€). (B.5.1)

Jj=0

In one dimension, homogeneous functions are determined by two values:

a;(€) = (afx.(€) +a;x-(8)) [€]"7. (B.5.2)

From the ellipticity follows thata| a; # 0, and we can define

to the half-lineRR, .
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Theorem B.5.3 Let a be a classical elliptic symbol of order as above, and let € C,
s € R be chosen such that

2imd v 1 v 1
— Z _Z — - B.5.
e A and 2+Re5 2<s<2+Re5+2 (B.5.3)
and s +0¢{-1,-2,...}.Letuc H:(R,) be solution of
pra(D)u=g on R, (B.5.4)

with g € €>°(R.) NH*7¥(R.). Thenu has an asymptotic expansion as— 0:

a
u(:zc)NE E Chg v log? .

k>0 q=0

This asymptotic expansion for any suchis free of logarithms, i.eq, = 0 forall £ > 0,
if and only if the following condition$g5) is satisfied

(985) Vi>0, a; = (—l)j)\a;’.

J

Note that, reduced to the case of dimensiowith scalar operators, conditioffgs) is
a generalization of conditioii$yg,) which corresponds to taking = 1.

PROOF (i) We first show the sufficiency of conditio(¥g;) .
If ($p5) is satisfied, then we can write

a(§) = ao(§) q(8), (B.5.5)

where ¢(£) has an asymptotic expansion of the form

g(&) ~ 14> &7 with ¢ = “—{t . (B.5.6)
i>1 o
Thus ¢ is a symbol ofrational type
For a¢ we find the factorization
ao(§) = af (€ +i0)2+ (£ —i0)2 7. (B.5.7)
Let us introduce the correspondirg™(R) symbol
a®(§) = ag (€ + 1) (6~ )27, (B.5.8)
Then we have the global representation of the symbals the product
a(§) = a™(£) ¢ (¢) (B.5.9)

with a symbol of rational type

¢(€) ~ 14+ g (E+i)7. (B.5.10)

Jjz1
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Formula (B.5.9) is deduced from identities (B.5.5) — (B.5.7) by Taylor expansign+at =
oo, which allows to expand the functions

) ()

in negative powers of¢ + i) .

There is also an expansion for

q_°°~—~1+ij (€+i)7 (B.5.11)

>1
so thatg™ ¢~ is a symbol of order—oco
The following result is well known from Eskin’s version [Es1] of the Wiener-Hopf method:
Proposition B.5.4 For h € H*¥(R, ) , the equation
pa™(D)v=h (B.5.12)

has a unique solution € IN{S(R+) . This solution is given by

= (D+41)"2 %, (D — i) 2"[af] A, (B.5.13)
where i € H*~(R) is an extension of. to the whole line.

For K € N and h € H* "5 (R,), this solutionv has the asymptotic expansion
= Z X () 220K ey vy 1 (2) (B.5.14)

with the remainderv,., x € H*X(R.) given by
Vrem,x = (D + 1) 72 Fp (D — )"0 k[ 1D, (B.5.15)

and the coefficientd), by

d, =

o—iE(§+o+k+1) <(
)

T(E+o+k+1 _Z’)*%M([acﬂ*lil))(o)- (B.5.16)

Let now u € ﬁS(R+) be a solution of (B.5.4). FoK € N, let v be defined by

v=¢q¢"(D)u with ¢*(¢) =1+ Z ¢ (E+i)7. (B.5.17)

Jj=1

Note that(D + )~/ is a convolution operator with kerng@% I~ te ™y (x), cfLemma
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B.5.1(i). Thus v € H*(R,), and v is solution of

p.a®(D)v = g — p,a(D)(¢*(D) — ¢ (D))u=:h € B (R,).

Thereforev has the expansion (B.5.14), and we can recover the expansion of

u = ¢ D) v+ (¢™(D)—¢"(D))u) (modE>) (B.5.18)
= (D)o (modTR(R,) with ¢ () =1+ Y g% (€ i)

by simply integrating (B.5.14):

LG +o+k+1)
(5+0+k+j+1

(D + Z‘)—j [XJr(aj) $%+5+k e—x} _ (_1)] = x%—i—ts-‘f-k-i-j et

Y

) X+ ()

(B.5.19)
exceptif + 6 +k e {—1,-2,...,—j}, where logarithms will appear.

Thus we obtain the asymptotics af up to regularityﬁS+K(]R+) , and since we assumed
that £ + 6 is not a negative integer, no logarithm will appear. We have shown that condition
($B5) implies that the asymptotics aof is free of logarithms.

(i) Let us show the converse. We assume that the equality)isy) is violated for some
j>1.Let M be the first suchj, so that

a(€) = a0(€) 4" (€) + anrs(§) (8.5.20)
with v
(€)= 1+ D €7 + (a3 (€) + qarx-(9) [

and an1(§) = 0 (|§]7"") as¢] — oo.

We will show that there exisy € H*"* ™M+ (R,) andu € ﬁS(K) solution of (B.5.4) such
that
u(z) = coxo(z) 220 + eaxo(z) 220 M logz  near z = 0. (B.5.21)

The question of regularity of = p,a(D)u is local atxz = 0. We can therefore stay within
the framework of (quasi-)homogeneous distributions and homogeneous symbols, discard
lower order terms such ag,,1(£), and replaces ™ by (£ +:0)77.

Since the Fourier transform of_ (x) 27 is ¢(§ +i0)~'~7, and the Fourier transform of
X+ (z)x7log x is (£ +40)~'"7(clog(¢ +i0) + d) , see Lemma B.5.1, we shall construct the
Fourier transforma of « in the form

W(€) = (£+40) 270 ey (€4i0) 20 M 1V log(€4i0)+dp (£ +i0) 2 0~M-1 (B.5.22)

We shall show that there exists, # 0 (hencec,; # 0) such that

prao(D)g" (D)u € Hi HML(R,). (B.5.23)

loc
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Since there holdg. (D — i0)27%(1 — p, ) = 0, we have the identities

prao(D)g" (D)u = piaf (D —10)
= p.aj (D —i0)

(D +i0):*° ¢"(D)u
“p. (D +1i0)27 ¢"(D)u.

[SJANEERSTIN

s—%—&—&-M-&-l
loc

Therefore, if we prove thap, (D +1i0)> ¢ (D)u belongs toH
proved (B.5.23).

Consider therefore the Fourier transforn{¢) of (D +i0)279¢™ (D)u if @ has the form
(B.5.22):

w(§) = (£+i0)2"¢M (©)a(s) (B.5.24)
= en(€+140)7M  log(€ 4 i0) + (ahx+ (&) + aurx—(9) 17 (€ +1i0) ™" + war (€)

(R.), we have

where
M—-1 A

war(€) = q; (6+i0) T +dyy (64+i0) ™M -y log(6+i0) & (|7 2) +0 (j€]72) .
7=0

Thus we can discara;, , becausep, .7 1w, is sufficiently regular.
Now we use the additive decomposition, see Lemma B.5.2 £r0 :

(a3 (&) + qux—(€) €M (€ +140) " = g, (€ +i0) ™M1+ (B.5.25)
(Mg, — i) (€ +10) ™ log(€ +10) — (€ — 10) ™ log(€ — 10) ).

2ir
The only non-regular contribution tp, .Z ~'w comes from the term

(€ +1i0)~"" log(¢ +i0) [éM + %((—1)%54 - qxj)} :

This term is absent if

R 1 -

Cm+ %((_1)MQM - Qth) =0. (B.5.26)
We see that the possibility of having,, # 0 together with condition (B.5.26) is a conse-
quence of the violation of equality$gs) for j = M . The proof is complete. [

B.6 AUXILIARY RESULTS ON ¥DO

We need some results for pseudodifferential operatbBd) of one variable acting on
functions of n variables, and also the connection betw&&0 in n variables and reduced
UDO in one variable. The suitable function spaces were introduced in SectionB.1. Here,
we only need the “model” domain for the boundary.af , that is R = R"~! x R, with
coordinatesr = (2, z,,) and dual coordinate§ = (¢',¢,,) .

The following lemma is a particular case of Theorem 1.11 and Lemma 2.9 in [ChkDul].
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Lemma B.6.1 Let the symbob = b(z;&,) satisfy 050¢ b(x;&,) = 0 (|&.]"7) as[&.] —
oo forall ke Ny, a e Nj, z € R", §, € R. Let k € Ny, s € R. Then the pseudodif-
ferential operatorb(x; D,,) is bounded between anisotropic Bessel potential spaces:

b(z; D)« HEOm(R™) — HEo )5 (R, (B.6.1)

If, in addition, supp b(z, -) is compact, for allx € R", then the operatorb(z; D,,) is a
smoothing operator:
b(x; D,) : HEDRRY) — €°(R") (B.6.2)

PROOF Itis easy to check that the operator
b(x; D,) : H®#F(RY) — HH—o@)hs=)m(Rn) (B.6.3)

is bounded, where

o(v) = 0 for v>0,
o lv| for v<O.

In fact, the boundedness (B.6.3) follows from the MikhlirdrBhander theorem on multipli-
ers since

(€90 () (€)
GRGI

Vie| <n, VE=(,6)eR", £ {

The boundedness (B.6.1) is a consequence of (B.6.3).

As for (B.6.2), it follows from (B.6.1) because the symbiol satisfiesagc‘)fnb(x;gn) =
0 (|€,]v~") for arbitrary v < 0. n

The following lemma generalizes Eskin’s Wiener-Hopf technique from the scalar one-
dimensional case, see Proposition B.5.4, to systems of multidimensional pseudodifferential
equations.

Lemma B.6.2 Let us consider the principal para,, of the symbola in (B.3.1)with the
ellipticity condition ($g;) . We introduce

a®(x'; &) == (&) ape(2,0;0,4+1) . (B.6.4)
Let s, v € R suchthaty — % <s< 5+ % , k € Ny. Then the system of equations
p.a®(z;D)u=g, gecH RN, (B.6.5)

where p, is the restriction fromR” to R , has a unique solutiors € H()#(R? )N,
represented by the formula

w = (D +1) 5 x4 (D — i) [age(a’, 0;0,1)] g, (B.6.6)

where x (z,,) is the characteristic function of the half spa&& c R".
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For arbitrary K € N, K < r, and g € Hs=+K)»(R") this solution has the
following asymptotic expansions

=

—1
’U,(QT/, xn) _ $Z+k€_mndk(x/> + urem’K(x/’xn% Ugem k¢ € ﬁ(oo,s—&—K),ﬁ(RrJLr)N

bl
o

=

[ N
= z2" di(') + u?em,K(x’, Tn) u?em’K c H(OO,S—FK),K(R:L_)N'
=0

ol

with the €>°(R"!) coefficients

Zi( S+k+1)

¢’ ) (D =) 5 Hag((«',0:0,1)] 'g) (@',0),  (B.6.7)

d¥(z) = ————
=) T (5+k+1

and

I Y o ) L PN
HEDE ;(1@—5)! (2'), .M.

For the proof see [ChkDul, Lemma 2.6]. Note that, by its mere definitioh satisfies itself
condition (Hpy) -

The following Lemma B.6.3 will serve for the evaluation of the terms and the remainders
in the Taylor expansions which will provide the next Lemma B.6.4.
Lemma B.6.3 Let b(z; D) be a¥DO such that for an integefn € N its symbol satisfies
b(z;€) = a7 b(z; ) with b in the classS(R” x R"). We suppose that, moreover, there
exists an integert € Ny such thatdsd}b(z;€) = & (|§’|E‘W'|]§n|y‘%‘%> for all o and

v=(v,v) € N*. Thenforallp, s € R and x > m, b(x; D) is bounded between the
spaces:

b(a; D) : HEDH(R") — Hlhsthtm—y).nmgo) (B.6.8)

LemmaB.6.4 Let j € Ny and let us consider the homogeneous paytof degreer — j
of the symboh in (B.3.1) For any K € N, there holds the expansion of the symhgl

a6 = Y () A (s E) &GS + Ajem (B.6.9)

met|y | <K—1

with a; ., (2";w) = % % wj+|7,|8;’jﬁg,laj(:c’, 0;0,w), 2’ e R" !, w==+1,and a; jem x
bounded between the spaces

& em i (3 D) 1 HEO(RMN  floostK—v).00 gy, (B.6.10)

If condition ($p4) holds, thena, .,, . (z';w) = &;.,(2") does not depend ow .
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PROOF The Taylor formula, applied at,, = 0, and then at¢,,| !¢’ = 0, gives:

K-1

aj(x’,r;ﬁl,ﬁn) - Z%(amaj)<x O |€n| 15 sgngn)|§n|y J+$n j remK(x é)
m=0
K-1 2 K-1-m (
=) 1 EL o 57, 0, 0:0,5n )
mmo ™ ()"

+ aj;rem,K(-r; 6) )

where the remainder can be written as
K 1
aj;rem,K(x;§> =T aé jrem, K I § + Z‘rn ]remmK m(x,7€>’

where z; ag.;lfem’K satisfies the assumptions of Lemma B.6.3 with= K and k = 0, and
xnaﬁ)emmK _with m =m andk = K —m. Taking = co and x = oo, we obtain
the lemma. u

A standard Taylor expansion of the functidg,)” at &, = oo yields the following
expansion of the symbai> (B.6.4):

Lemma B.6.5 Let us consider the symbal defined in(B.6.4). For any integerkK € N,
there holds the expansion

a*(2; &) = Y &%) &7l + al i (25 &) (B.6.11)
J<K—1
with ag°(2') = ag(2',0;0,+1), a°(z') = cjap(z’,0;0,+1) with ¢; € R, and a5, , isa
bounded operator between the spaces
aremK(x D ) : H(oo,s),oo(Rn)N _ H(oo,s—&—K—y),oo(Rn)N. (B612)

B.7 PROOF OF THE MAIN THEOREM OF PART B

We are going to prove Theorem B.4.1. Let us start by reformulation of the conditions of
equation (B.3.2): we consider

¢ € H5(# )N suchthat a(2;D,)p =g, with ge H® = z)N (B.7.1)

for arbitrary —oo < p < oo. In [ChkDul, Theorem 1.12] it is proved that the system
(B.3.2) is Fredholm (or is uniquely solvable) if and only if the system (B.7.1) is Fredholm
(is uniquely solvable) and these equations have equal dimensions of kernels and cokernels.

Since the assertion is local, we can suppose that our domain is the halfJ&pa@and
all functions and symbols are compactly supported in the varialbdeR” . We recall that
x = (2/,z,) and its dual variable ig = (¢/,¢&,) .
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Homogeneous symbols and the kernels of the corresponidid@ with negative order
have singularities a6 . Multiplying them by a functiony® € ¢*>(R), where x°(¢,) = 0
for |&,] < 1 and x°(&,) = 1 for |&,] > 2 we cut the singularity off. The perturbation
operator is smoothing{l — x°(D,)]lp € €5°(R") for arbitrary o € HW"(R™) (see
Lemma (B.6.1)), and will be ignored. Although we do not write the cut off function, we
suppose it is present and forget about singularities of symbals at0 .

Since €°(R})N ¢ Hees—vHMHhoo(Rr)N for any M € Ny, it is sufficient to derive
the asymptotics for a solution of equation (B.7.1). Relying on the expansion of the classical
symbol a(x;§) :

M
a= Z & + Arem,M+1, (B.7.2)
7=0
aj € SEO_IfI(Ri X RH)NXNv arem,M-l—l S SICJI_M_I(RT:_ X Rn)NXN

we will apply induction onM , starting with the casé/ = 0.
For M = 0, the equation (B.7.1) (with#Z = R" , as agreed) is written in the following
equivalent form
p.a*(z; D) = g™, (B.7.3)
where a>(2’;¢,) is defined in (B.6.4) and
9% = g — Aem1(7; Do) — [ag(z; D) — a™(2'; Dy,) b

We observe
(i) The remaindem,ey, 1 (7; D,): HE)2(RM)N — Hs+1=).00(R7)N s hounded.
(i) LemmaB.6.4forj =0, K =1 gives that

ag(x; &) = ag(2’,0;0,sgn&,) [€n]” + a0, rem,1 (2, &)

With ag.em 1 (75 D,) @ H)2(RM)N — Hloos+1=v).00(Rm)N phounded.
(i) LemmaB.6.5forj =0, K =1 gives that

a*(z;&,) = ag(2',0;0, +1) [&.]" + age, 1 (7, &n)
with a®°

rem,l(x;Dn) : H(OO78)7OO(Rn)N B— H(OO7S+1_V)’OO(RR)N bounded.

Condition ($p4) Yields thatay(z’,0;0,sgn&,) = ag(2’,0;0,+1), thereforea, — a>* =
a0;rem,1 — a0, 1 - We deduce fromyp € H#)(R")V | that

g™ € HlosHL-mooRmyN, (B.7.4)
Invoking Lemma B.6.2 we derive the expansion (B.4.3) for=1:
¢ = G0+ Premss Po(@'70) = d°@)zie (8.7.5)
d® € E°(R" )V, Py € HE T2 (R)N.
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Now let M > 1 and suppose we have proved

M-1
¢ = Z ¢k + ¢rem,M ) d)k;(x/’ xn) = dk(x/)xg—‘rke_xn 5 (876)
k=0

d* € EOR"Y, oy € HERIY

It can be proved that, € Hsth->(R? )N | becausel — s > —1, see [ChkDu1, (2.30)].
Then the right hand sidg*> of equation (B.7.3) can be represented as follows

M M-—j
gOO = g%em,M—}—l - Z p+a](x’ D$)¢k
j=1 k=0
M-1
— ) p.lao(z; D) —a™(a'; Dn)gpy,, (B.7.7)

i

0

where
giem,M—&-l =g — p+arem,M+1(x; Dz)d)
M
- Zp+aj(x; DI)¢rem,ij+1
j=1

- p+[a0(x; DI) - aOO(CL,/; Dn)]¢rem,M :

Itis clear from the arguments used for the stép= 0 that g,.,, ,,,, belongs to the space
H(oo,stJr]\/[Jrl),oo(Ri)N )

We now use the expansion (B.6.9) witki = M +1 — j — k for the terma;(z; D,)¢,,,
and the expansion (B.6.11) with = M + 1 — k for the terma>(2’; D,,)¢,, . Taking into
account that conditior{$4) holds, we obtain

M-1
goo = g?em,M-l—l - Z Z bj§m,”/'<m; Dﬂc) d)k: ) (878)
k=0

Jym, '
0<j+m+|y |<M—k

where g2, \,,, belongs toH(ees—vHM+1eo(Rm )N and

!

By (256) = 2 (€)Y By (&) 7 NELY,

with bj.,,(2') defined forz’ € R*~! as follows

bj;my’Y' (.%/) = = 00

éj;0,0(x/) — aj (I/) if m= O, ’)/ =0.

: { &y (') it m+||#0,
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Now we use formula (B.6.6) Lemma B.6.2 to invert the operaidt(x’; D,,), and from
equation (B.7.3)p,a>(z; D,,)¢p = g* with the expansion (B.7.8) o§> , we find

M-1
k':O j7 m7’y/
0<j+m+|y |<M—k
00 -1
+ [er(a (l’/, Dn)] g?em,M-l—l?

where ay(z') = a,(2’,0;0, 1) . Recalling Lemma B.5.(i), and using a Taylor expansion at
&, = oo, we find the followingcf (B.7.6) for the ¢, :

(SN

a5 (2 )b mar (2 Dy) ¢y, (B.7.9)

Ltk _

= (én + Z)f *kfle%(%+k+l)i F(% +k+ 1)dk($,)

(SN

M
= dM(@) (& +i0) 2 4 (G i) M dE, (o) (B.T.10)
q=0

and the last summand is ignored in the sequel because it contributes into the smooth remain-
der term. From (B.7.9) and (B.7.10), we see that modulo a remaiqtn@ggMH in the space
HeostM+D.00(R1)N ¢ s a finite sum of termsp which have the generic form

¢ = (D,+i)" 21 with (B.7.11)
¥ = p,(D, i) 2a,"(«') h(x) with (B.7.12)

h = x?ﬁ%_}x{(gl)vlf)(x/) €;€|§nly X ggx’—f’ [d(l‘/>] (fn + io)_%_q_l}a (B713)

for m, ¢, g€ Ny, ¥ € N1 Jandb € (R )NV d € ¥>(R"1). Let us study
h first:

h(z) = @ b(a) [(00)7d] (@) X Fe,, { (€0 +i0)F € )" |

= dile!) Ty, {02 [(6 +10)5770,(60)] ] (B.7.14)

with d:(2') := (=i)"b(a’) [(i0.)"d](z") € €><(R")", where we have used the for-
mula,cf Lemma B.5.2,
1t = 0,(t) (t +1i0)7 with 6,(t) = x,(t) +e ™ x_(t). (B.7.15)

We note that although we have taken derivativs¢,|” , 0 —functions do not appear due
to cut off functions (see the beginning of the proof).

Inserting expression (B.7.14) @i into (B.7.12) we find that
V@) = b T (6~ )58 (@) Fopg, [0l 2]}

= P, Fera {6 — ) EEHI0)FTTI0(6)  da(e)), (B726)
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with dy(2') = cag ' (2')d(2") € € (R" ')V . By representing the functioft,, — i)~z as
a Taylor series in(&, —i0)~2 77, cf (B.7.10), and applying the equality
(60 —10)"2776,(&) = (& +i0)"277, p=0,1,...

(see (B.7.15)), we get
M
¥(@) = 3 Fere{ (€ + 10 o () + Yrpranl@) . (BTAT)
p=0

with dy, € C(R*™ NN and 4,y € HOEOS5HMEDRM)N - The restriction op-
erator p, in front in (B.7.16) was eliminated since the Fourier transform of the analytic
function is supported ofR, .

From (B.7.9) — (B.7.17) we find

M—-1

¢(r) =

(]

(Do +1) 5 Ty 0 { (€0 +10) 7 bl @) + [p.a™ (s D))" Ghmarnn

T
Tk

Y A\ —k— 0 -1
= Y T {6+ 7B G+ i0) 7 dan@) + [p,2% (s Da)] T i
=0

o

By transforming (¢, + i0)~*~! into (&, +4)7%"! as above, and using the asymptotics of
[p,a>(2; D,)] 7lg§em7M+1 from Lemma B.6.2, we finally obtain the desired expansion

¢(x) = 3 2i e dH (@) + Bremara (@) (B.7.18)

With ¢, 14y € HEOSHMFDo(RENN "and d* € €>°(R™!)N . The theorem is proveds

B.8 SPATIAL ASYMPTOTICS OF SOLUTIONS TO BVP

We have already described the first two steps of the analysis of asymptotics by the
Wiener—Hopf method(i) the reduction to a?DE (A.3.1) on the boundaryji) the asymp-
totics of the solution of thisPDE. There remains to derive the spatial asymptotics of the
solution u to BVP (A.1.1), represented by the formula (B.2.%)= N f + Z[u] — V' [T'u],
if we know the asymptotics of the densiti¢s] or [T'u] . Note, that sincef € €5°(R"*),
the summandV f only contributes to the regular part af .

Therefore, we only need to apply either the single layer poteritiabr the double layer
potential Z to a function ¢ defined on.# , the asymptotic expansion of which being of
the form (B.4.3).

Thus, let us by denote by7 either the single layer potential”, or the double layer
potential 7, see (B.2.6), associated with an homogeneous elliptic second ofderN
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systemL(D,) in R™" with constant real coefficient§ . Let ¢ be the order ofe/ (¢ =
—1if =% andg=1if &/ =2). We consideru defined on2 by

u(x) = o ¢(x), suppop C.#, =x€c. (B.8.1)
Forany 2’ € & ,let m(2”),...,7(2’) be all different roots of the polynomial equation
det L(.7,.(2#)(0,1,7)) =0, Im 7 < 0. (B.8.2)

We recall that(0, 1, 7) represents the value of the dual varialjle= (¢',&,.,&,11) and that
7.(2") is the Jacobian of the local coordinate diffeomorphisicf Definition A.4.1.

We assume that it is possible to enumeratez”), ..., 7,(2”) so that
($B6) The multiplicitiesny, ..., n, of 7 (27),...,7(2’) are constant orf’ .
Therefore ther,, are €>(&) .
Since L isa N x N elliptic system of order2, there holds
n+...+n=N

and since its coefficients are real, the roots of equation (B.8.2) withh > 0 are the
conjugate of ther,,,(2’). Letfor 2/ € & andm = 1,...,¢ the angular functions),,, +
be defined as

U —1(#',0) :=cos0 + 1, (") sinb, Yy 1(27,0) :=cosO +7,,(2")sinf . (B.8.3)

Theorem B.8.1 Let ¢ be a N -vector function on.# with the following infinite asymp-
totics without logarithms: 39y € R, VK > 0

¢ = Zr“’“ )+ Gromzs AFEECEN, Grmp € HE ()N

We assume that; is not an integeand that the N x N second order systemh satisfies
hypothesis($gs) . Let </ denote either the single or the double layer potential associated
with L and q its order, and letu be defined o) by /¢ .

Then for arbitrary K € N, the potential-type functiom has in local cylindrical coor-
dinates (2',r,0) the following asymptotic expansion free of logarithms as well

¢ N —1
u = Z Z x(r) Z rlsind gl 4 (27, 0) d, L (2) (B.8.4)
m=lw=11 =0

K+q—1p(m,k)

+ Z Z Z proatk pa- k(! 9)s1na19005"‘29dk”( M+ Uremx

= J=0 |a|<N(m,k)

where w,em x € HPH (RN and the coefficientsl, , and dJ are €(&).

loc

() Here we restrict consideration to the potential operators related to a second order system. For more general
results we quote [ChkDul] and the forthcoming paper: R.Duduchava, W.Wendland, Asymptotics of solutions
to Agmon-Douglis—Nirenberg systems.
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The proof is a direct adaptation of proofs in [ChkDul, ChkDuz2].
As a straightforward corollary of Theorems B.4.2 and B.8.1 combined with
e formulas (B.2.8) and (B.2.10) for Neumann conditions,
e formulas (B.2.9) and (B.2.11) for Dirichlet conditions,
we obtain:
Theorem B.8.2 Let the N x N second order systemi satisfy hypothese&)ai), (Ha2)

and (9gg) . Then any solutionu of BVP(A.1.1)with f € %5°(R™"*!) has the following
asymptotic expansion in local cylindrical coordinatés’, r, 6)

V4 T —1
1 ,
w=>"S" x| Y risiniguid(+',0)ds, (#") (B.8.5)
m=1lw==+1 7=0
K—1p(m,k)
ik %—HC_j ! EeY «a kgl .1
+ r2 g, T (27,0)sin® 6 cos 20dys (2")| + Urem x

where w..m x € His (R"*1)N and the coefficientsl/, , and dZF: are €>(&).
For the particular case of isotropic elasticity we have to deal with theEleguiation
L(Dg)u = pAu + (A + p) graddivu = f, f € 65°(R?). (B.8.6)
Equation (B.8.2) has one triple roet = —i and for the singular functions (B.8.3) we get
Y1 —1(0) = ¢ and P11(0) = e .

The asymptotics of the displacementx) has the form

2
ule'n) = 30 [ 3 rksioe () ) () (8:87)
w=t1 j=0
K—-1 pg . 4 . )
4 Z 3tk (3-04k)0 o1 g cogo2g ki (2| + Urem i (27, 7,0) .

k=1 j=0 [a| <Ny

The stressT'(x, D, )u(x) has a similar asymptotics as the displacement, starting with the
exponentr‘% instead ofrz .



Part C. The Mellin approach

C.1 GENERAL EDGE ASYMPTOTICS

In our second approach, we are considering the boundary value problem (A.1.1) as a
special case of boundary value problems on domains with edges. For such problems, the
method of Mellin transformation is a well-developed technique that allows precise descrip-
tions of the solutions in the neighborhood of the edge.

The general description of solutions of problems like (A.1.1) on a wedge originates from
KONTRATIEV'S work [Kol] and was developed in the subsequent works [MaPIl1, MaRo1,
NaPI1] and [Dal, CoDal], among other contributions. As a preparation for our proof on the
absence of logarithm, we are going to explain the general edge structure in the framework of
the above papers.

We keep the local cylindrical coordinatéds”’, r, ) around the edges, see Defini-
tion A.4.1. As this will be of constant use, we introduce the notatofor the two normal
cartesian coordinateg,,, #,,11) , which will be also alternatively denoted ki, y2) . Let
us consider as domain for the boundary value problem the wéldge- & x I', whereTl’,,
is the plane sectofy ~ (r,0) | # € (—w,w)} of opening2w . Let 0.1, be the two sides
of I',,. They correspond to the two sidés IV, of W, . The situation which is the aim of
our investigation corresponds to taking= .

But for a while, let us consider the more general case of an elliptix N system
L = (Lge) of order 2d complemented by two set8. of m := dN boundary conditions
on 0+ W, . The general framework of edge asymptotics demands a supplementary condition
of ellipticity along the edge, see [MaPI1, MaRol]. A natural way to satisfy this condition
is to suppose thatL, B_, B, ) is associated with a coercive forinon H?, see [Dal], as
stated in Part A (but now with orded and more general boundary conditions).

Thus, let us considet solution in HY(W,)Y of the following boundary value problem
with a right hand sidef € €~ (W )"

{ Lu = f in W,

Cl1i
’}/iBt’U, = 0 on (‘LWM ( )

The solutionu has an infinite edge asymptotics, mainly determined by the expansion of the
problem (L, B_, B,) in “homogeneous component$L’, B/, B’), j > 0, with respect to
the variablesy normal to the edges”.

In the coordinateg2”,y) € & x I, , the systemL has variable coefficients, in general.
We write it with the notationL = L(2’,y;0,/,9,). Forany 2’ € &, let L°[2”] be the
principal part of the operatof(=’, 0; 0, 9,) . We denote similarly the boundary operators in
local coordinates byB. (2, 7; 0., ,) and their principal parts iy = 0 by B%[#”] .

35
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For eachz’ fixed in &, thesingular exponentassociated withz’ are the complex
numbers\ such that there exists non-zero solutiogis= () to the problem

{ LO[2")(™p) = 0 in T,

v« BY[2")(rp) = 0 on d.T,. (C.1.2)

In general, due to the dependency en of the coefficients of(L", B ), the setA[2'] of
such A a priori varies with2’ € &, see [MaRo1, CoDal].

The Ansatz for solutions in the form*« () has a close relation with tHdellin trans-
formwhich allows a diagonalization ofL°, BY )[#'] for each". Let us recall the Mellin
transform A — 9(f)(\) of afunction f defined onR, :

dr

r

M(f)(A) = / TP

We have the formulaéi(ro, f)(A) = A(f)(A) which is the foundation of the Mellin
symbolic calculus. Thus the Mellin symbal — 24°[2'](\) of problem (C.1.2) is defined
after writing L° and BY in cylindrical coordinates as

r 2. 202")(60;70,,05) and r "R [27)(6;10,,05) (h=1,...,m),
(where p+ j, = deg B+ ;) by

A°02'1(\) : HY(—w,w)V — L2(—w,w)V x C?m
2 — (30[%'/](A739)90 : viﬁi[ﬂf’](A,ﬁe)w).

Foreachz’ € &, A — A°[2'](\)~! is meromorphic inC and the set of its poles i4[2] .

It is possible to classify the singularities occurring in the asymptotics of a solutiof
(C.1.1) in (i) Leading singularitiesand (ii) Shadow singularities

(i) Theleading singularities s of u are directly obtained from the Mellin transform
A= M(f)[27](\) of £ © viathe Mellin symbolA°[»"] of problem (C.1.2) by the
inverse Mellin formula

s%(#",y) = L / 0 P [§0027) ()] M2 £, 0,0)[27) (1) s, (C.1.3)

2

where the0 in (f,0,0) stand for the zero boundary conditions antl is a suitable
contour surrounding the poles € A[2’] in the right half planeRe A > d — 1.©)

(%) Defined by M(f)[27](X,0) = [;° r*f(2',y) & as a natural extension of the formula &, .
(6) More precisely, for anyK € N we obtain the contribution modula (rf) to the infinite asymptotic
series by using a contour which surrounds the (finite set of) pales A[#'] UN contained in the strip

d—1<ReA< K.
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(i) Theshadow singularitiegequire for their definition the Taylor expansion of the coef-
ficients of L and B, with respecttoy: Let

2, (M) 8y and Buy= 3, W) 050,

lil+[k|<2d li[+1k[<p+

be the expressions af and B+ . Then for j € N we define

L] = ) ). ajek0) ; O

li|<2d  [k|-[B|=2d—j

. , ﬁ
BL,l21] = Z Z ayﬁbli’ih(' /O) ak

ﬁl
Mgpi h |k|_‘6|:Pi,h_j

Let 272 denote the triple(L/[2”], B, [#”]) . Then the shadow singularities, . . .,
sP are recursively defined as

1 -1

(7 y) = —5— (202 ()] M (PP (£7, ¢5)) [# ) (1) e, (C.1.4)

with  (f7,g%) =A's" 1+ ... 4 APS°

Here 3 is the collection of degree®d, . ..,2d, p+ 1,...,p+ ) andrP(f,g.) isa
condensed notation fofr?? f,rP=1g_y, ... rP=mg_ L PRl PR Y

Then the sums® + s + ... + s? + ... gives the asymptotics ofi asr — 0.

In the most general case, the structure of #ieis quite difficult to describe because of
the possible change of multiplicities in the singular exponexits'] , see [CoDal, CoDa3].
If hypotheses are made to avoid any change of multiplicity, see [MaRo1], e&ctan
be decomposed into elementary terms of the faifma’) (> )42 log?r (2", 0) . Thus we
obtain the following expansion in local cylindrical coordinates: For &y N

a(A\p) 3(A.p,q)

w= 3 3 3 M) loghr @75 0) + teemic - (C.15)

ReAM+p<K ¢=0 j=1

The exponents\(2”’) belong to A[2’] UN and their real part is> d — 1. The coeffi-
cients c?””q are ¥ functions on& and depend orf . The remainderu,., x Satisfies
P i = o(rK-18F1/2) asr — 0 for any multi-index 3 € Nj*' . The go?’p’q are angu-
lar N -component vector functions i#>°([—w, w] x &) and depend only on the domaln
and the operator$L, B) .

The logr terms come either from non-trivialoRDAN chains in A°[27]~!, or from
resonances betweelt’[2’]~! and the Mellin transform&n(r2? £, 0, 0)[2"] , see (C.1.3), or
M(rPALsP~ + .- )[27], see (C.1.4).
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C.2 CRACK ASYMPTOTICS , FIRST RESULTS

From now on, we concentrate on the situation of a crack, i.e. when the openisgr,
and when theame boundary conditiorzse applied on both sides of the crack, ife, = B .
Thus the boundary conditions are denoted By= (B, ..., B,,) and the order ofB;, is
prn, h=1,...,m. The boundary problem takes then the form

Lu = in W,
u =17 (C.2.1)
v+Bu = 0 on 0. W,,
where we assume that € ¢5°(R" ) .
In this situation there holds
Vo' e &, A2l ={t; keZ}. (C.2.2)

This has been known for a long time for the Laplace operator, see [Grl]. It is proved for
elasticity systems in [DuWel], for general second order Petrovskii-elliptic systems (such as
thermoelasticity or electroelasticity for example) in [ChkDul, ChkDu2], for general scalar
elliptic Dirichlet problems of ordeR2m in [Koz1], and finally in the general framework of
Agmon-Douglis-Nirenberg elliptic systems in [CoDa4].

Therefore the assumptions on the constant multiplicity of the singular exponents are

satisfied and expansion (C.1.5) holds withz') = g . This clear separation of the spectrum
allows a decomposition of leading singulari#y in (quasi-)homogeneous elementary parts

®9 for X of the form A = % according to:

)= 5= | LT IO 0010 . (©23)

20w
where () is the circle with center\ and radiusj .

Definition C.2.1 If ®° is defined by a residue formula like (C.2.3) on the cirglg\) , we
call sequence of shadowssociated withd® , the infinite sequenc@”, p > 1, defined by

PPa'] = —i A0 () M (PP Lo (A PP+ - 4+ APDRY)) [ (1) e
27 Jy(x+p
(C.2.4)
Here v()) + p is the contour around\ + p translated fromy(\) and 1,01 is the char-
acteristic function inr- of the interval[0, 1] . n

By linearity, we obtain that a decomposition ef in a sum of ®} provides the corre-
sponding decomposition of the shada® in a sum @ , where (®?), is the sequence of
shadows associated with} . Therefore, from now on we only consider elementary leading
singularities of the form (C.2.3) and their sequence of shadows.

The result of [CoDa4, Thms 5.2 & 5.3] gives moreover:
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(i) Intheleading singularitiesthe non-integer exponents+ 1 have nologr terms and
the corresponding basis of singular functio(rr§“/2 cp;‘f“ﬂ)j has the dimensiom: .
(i) Let pmax := max{pi,...,pn}. FOr any integerA > pn., the functionsr*y(6)

are polynomials in the variablegy;, y,) . Moreover the shadows of polynomials are
polynomials.

Therefore:
(i) For an exponeni = % + k, the elementary leading singularities have the form

BY[2"] = D ()M (0 0) o e EF(8). (C.2.5)

Jj=1

(i) For a positive integet\ > pu.., P} is a finite sum of terms of the form(2") (y)
with smooth ¢ and polynomialy (homogeneous of degreg). Moreover, the se-
quence of shadow®’ associated withP} have a similar structure with homogeneous
polynomials of degree\ + p.

As a consequence, we have obtained the statement of Proposition A.4.2.

But, when X = ; + k, since A + p = § + k + p is a singular exponent, i.e. a pole of
2A°[2’]~!, we should expect resonances inside the integrand of the sha@ibwbetween
M(rPAL PP~ + ... )[2'] and A°[2']~!, i.e. poles of order> 1, which would yield log r
factors. We are going to prove that, in fact, there are no resonances.

C.3 “CAYLEY” REPRESENTATION FORMULAE

Our method is a direct continuation of [CoDa2] where “Cayley representation formulae”
are introduced to describe the angular behaviod(jrof the singular functions. Its is shown
there that any singularity can be expressed by combination of two fundamental types of
functions which, using the complex writing of the cartesian variableg = (y1, y2)

C =y +iys =re?,

can be written as, forany € C, ¢ € C with ( Z R~ ,anda € C with |a| < 1:
(a¢+¢)* and (¢+aQ)™
The above functions have to be interpreted in the following way:
¢ ¢

_ _ A _ A
(aC+0)* =0 (1 ta ?) and (¢ +al) = ¢ (1 ta ?> , (C.3.1)

which means in polar coordinates> 0, 6 € (-7, 7) :

(al +O)* = rke_w’\(l + 62“’)/\ and (¢+al)* = 7“)‘61'”(1 + e_zw))‘. (C.3.2
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The action of a partial differential operat@}(d;, d;) on (a¢ +¢)* and (¢ +a()* exhibits
its Cayley symbolsQ*(«) and Q(«) as follows:

Q' () =Q(a+1i(a—1)) and Q (a):=Q(1+a,i(l —a))

and there holds, if) is homogeneous of degree

{ Q(9,) (aC + E)A = P,(M\)(a¢ + Z))\_qQJr ()
Q(9,) (C+al)* = PN+ () Q (a),

where P,(\) is the polynomial of degreg, A\(A—1)---(A—q¢+1).
Letus fix 2/ € &. Let L*[2’](«) be the two Cayley symbols of’[2’] and B*|[2”]

those of B°[2’]. We have the following formulas, valid for any € C, which are the
matrix version of the above ones: lgtc CV be a vector, there holds

{ L[2"(0,) {(aC + C)*a} = Pau(N)(ag + N2 L [2"](a)q

_ _ (C.3.3)
L[2)(0,) {( +ag)’q} = Pau(N)(C+a0)* > L [2"](a)q.
These Cayley symbols allow to describe for amy and A the space3[#'](\) of the
homogeneous functions of degree ), solutions of the equation without boundary condi-
tions

L°[2"]v = 0.

Due to the ellipticity of the operatof.’[2'], the equationsdet L*[2'](a) = 0 have m
roots inside the unit disd¢a| < 1, counting multiplicity, andno roots on the unit circle
la| = 1. Let us denote

ajl2’], .. a 2], afls + 2] (C.3.4)

-
the distinct roots ofdet L~[2’] and det L*[2”] inside the unit disc.

For a while let us assume that these roots are simpler(i.e.= m ). Thus, |etq£i (2] €

C¥ be non-zero elements of the kernéls: LL* (a;) , and for any (non-integer) € C let
us define thelV -component functions

wi[#](N) = (o [#']C+ ) g [+7] and w;[2'](N) = (¢ + oy [#7]0) g [#7].

Formulas (C.3.3) give immediately that these functions solve the equatipn’]v = 0,
thus belong to3[#']()\) .

As proved in [CoDa2, Th. 2.1], thesen functions form a basis of the spagz’|(\)
and, moreover, we obtain “stable” expression&mj [2'](\) with respect to the parameter

2’ without the assumptions that the rootg[2’] are simple, by using contour integrals
in a around the discD; of radius withd < 1 such thatDs contains all I’OO'[SaEt [27] :



C.3. “CAYLEY"” REPRESENTATION FORMULAE 41

There existsN -component polynomials of degree— 1 in o depending smoothly o',
denotedg, [#”](a) for £ =1,...,m, which define a basigw " [#']} of 3[2"]()):

w2\ = / (aC + ) L*[2"](0)""q¢ [#')(a) da
=0 (C.3.5)
wr[2)(\) = /| . (C + a0 L [2')(0) " q; [+'] (@) da.

This basis allows the construction of &an x 2m matrix .4 [2’](\) whose inverse has
the same poles as the inverse of the Mellin sym@@k’|(\)~! : For this let us introduce
20[2'](\) the N x 2m matrix the 2m columns of which are

w2 (), ... wh[2](N), wil2](N), ..., w [#]().

Let us recall thatB°[#’] is the m x N matrix of the principal parts of the boundary op-
eratorsB(2",0;0,9,) . Let g, be the trace operators (actinglommogeneous functions)

g-v=v ‘rzl and 0=—m and g+v="v ‘r:l and =7 °

Thecharacteristic matrixof the problem is then thém x 2m scalar matrix given by

A0 = (& ol ) w00

The formula describing/A°[ 2] (u)]_1 involves a right inverse to the operatd® on ho-
mogeneous functions of degree (i.e. without boundary conditions) and the inverse of the
matrix .+ "[#'](\) allows the correction of boundary conditions.

Let $* be the space ofNV -component vector functions homogeneous of degkee
on the plane sectof’,. And let f — v = R[2'](\)f be a solution operator of the
problem L°[2']v = £, acting from $* 2% into $*. According to [CoDa2], it is possible
to construct such an operator wi#i> regularity in 2’ and analytic dependency ii.

Our first representation theorem for the inverse symigjl2']~! is the following, see

[CoDa2, Th. 4.4], — We write it directly for the Mellin integrand [A°[»"] (u)}_l in view
of application in formulas (C.2.3) and (C.2.4):

Theorem C.3.1 Let M[2"](\) be a right inverse toL°[#”], acting from $*** into $*.
We have foranyz’ € &, n € C and any(r,c+) € L*(—7, 7)Y x C™ x C™:
W0 ()] (rr61) =
R[2"](w) (r"~2F) + (C.3.6)
W[+)() A [#')() " (& — 94 B+ R (40) (r-20p) ).

(") The degree of homogeneity and the traceror 1 completely determine an homogeneous function If
is homogeneous of degrge and v := v |T:1 ,thenv(r,0) = r#*v(0) .
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Formula (C.3.6) will be applied recursively to special subsets of triples:. ) which
have the property to be the traces (in= 1) of homogeneous functions representable by
Cayley integrals like (C.3.5):

Definition C.3.2 For any A € C, let us denote by$); the subspace of homogeneois-
component functionsf € $* which admit a representation as:

f= (o +0)*q*(a) da +/ (¢ +al)q (o) da (C.3.7)

laf=6 =6

with N -component vectorg™ meromorphic ina: (and without pole in the annulué <

la| < 1). Such a representation is madiqueif we assume that thg ™ are holomorphic

outside the unit disc and tend thas |a| — oo . [
We can define a special solution operafg[2”]()\) acting on the subspac, >

into $;: For f € $H, > represented by (C.3.7) with the uniqueness constraint, we define

Ro[2"[(A)f by

ol INF = Pu)™ [ (aC+ 0P L71](0) (@) da
=3 ~ (C.3.8)
—I—Pgd()\)l/l » ¢+ aC)”\ L‘[%"](oz)_lq‘(oz) do.

The vector function obviously belongs 9, and if P»;()\) # 0, formulae (C.3.3) give
immediately thatZ’[2"] Ro[2'](\) f = f .

C.4 REPRESENTATION OF SINGULARITIES

We start from the expression (C.2.3) of the leading singulabity The function

(2" 1) = ME*F,0,0)[2"](n)

is €>(&) in 2’ and analytic iny in the discd, encircled by the contoury()\). Us-
ing the representation (C.3.6) with analytic and zeroc. , we find that the only pole of

T [mo[.y’](u)]_lim(r?df,0,0)[9&’]@) inside d, is = A and that there holds
W0 = 5= [0 A 1)) 90 (€41)
T Jy

with a 2m -component vector functiofiz”, ;1) — +°[2”']() whichis > in 2’ and ana-
lyticin y . Since the pole of #"(11) ! is of order 1, see [CoDa4], and since by construction,
the columns of20[2"](1) belong to the special spac®; of homogeneous functions, we
have obtained
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Lemma C.4.1 The leading singular function’ — ®°[2”] is (&) with values in$; ,
which means that there exist§ -component vector$10f [2”](«v) meromorphic ina and
%> in 2’ such that

Ol2'] = al + ) gi[#)(a) da al)* q5[2"](a) da. 4.
Vi) = [ D gl e das [ (ol gl @) o (©42)

|a|=6

The first shadow singularityp® is given by

1

20 S )11

@'+ = P[22} ()] (o (PP 80) [#)(pr) dp. (C.43)

The following lemmas give that the structure %t ®° is compatible with representations of
the type (C.3.7).

LemmaC.4.2 Let A € C. Forany j € N, the operator L’ acts from E>(&, $,) into
€=(&, 9,77,

PROOF. The operatorZ’ is a linear combination witte>(£) coefficients of terms of the
form 4% 9',, ) with 5| — |3| = 2d — j . The derivatived’,, acts only on the coefficients
depending onz’ and do not change the angular structure, so we may discard it. We are left
with ¢? 83 , which we can write as a linear combination of terms

PP agl 8%2 with 81 + 0y — B1 — 3o = 2d — .

It is clear that it suffices to prove that for ady, d,, 5, and Gy with 6; + 0, — 31 — B2 =
2d — j , and for any functiony(a©) meromorphic ina, there existsy’(«) also meromorphic
in « such that

B1 B2 991 5d2
ey

|a|=8

(a¢ + )M q(a) da = / (a¢ + )M ¢/ () da.

|a|=8

We have

R [ (Do da=e [ ahaC+ D o) do

|a|=8
With the equality¢ = (a¢ + ¢) — a¢, we transform¢® ¢* into a linear combination of
terms of the form(™* (a¢ + )72 . Thus we are left with integrals of the form
[ ¢ac+ DM ) da.
la|=5
As O (al + ()M~ = c("(aC + ()MI24" we integrate by parts times in the above
integral and obtain the result. [

In the same way, we obtain the corresponding result for the trace operators:
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LemmaC.4.3 Let A € C. Forany j € N, the operator B/ acts from &> (&, $;) into
€>°(&, 9,7 7P), where $,7° is the space ofm -component functions homogeneous of
degree(\ — p1,..., A — p,) with Cayley representation likg.3.7)

Let us return to (C.4.3). Letr', ¢!, )[#’] be the traces om = 1 of A'[2/]®%[2"]. We
have

1 1 1N,/
m (7, ay)[27].

By Lemma C.4.2,71=2Fr![5/](9) belongs to&>(&, H7' ") : There existsq*[2”]
such that

,,,,)x-i-l—QdFl ' = a A+1-2d da Oé_ A1-2d - P o) do.
2= [ 0Cr DM ) dat [ (oD g

laf=6

M (Lo, (rPA %)) [#7] (1) =

We define foru € C the following elementfi[2')(n) € $H5 >

£l = [ (D@ dot [ (Cralyr e (o) do

la|=6

Of course, f5[2”](A + 1) = r*1=24pl[%”] . Let us denote

£ () = r =2 (2] = fol2) ().

It is clear that in the representation formula (C.3.6), we may take as right inverse ¥t ,

Rol#'1(1) (Fol#'1(w) + Rl2"1(w) (£ [2"1(w),

instead ofR[2"](1) (r*~2*F"') . Therefore we have the following decomposition in four parts
of the integrand of (C.4.3):

rt [mo[%/](#)]ilm(]lre[o,l](rﬁw@o))(/i) = m@“ [QLO{%I](H)}A (Flﬁi))
_ m([]l + Us + Uz + U4) (,u)

(C.4.9)
where

Ui() = R0 £ (),

Us(p) = Rol2"1(w) Fol2 (),

Uslp) = [ () A [27)(0) " (—9 Bl ] B2 )00) £ (27 (1)),
Uslp) = (")) A 1)) (G — 92 B2 Rl (1) £+ (1)).

Coming back to (C.4.3), we have to compute the contour integral

1
T

——— (U + U+ Us + U dpu.
%im 7()\)+1N_()‘+1)( 1+ U2+ Us+ 4)(#) H
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Let us compute the residue jm= )\ + 1 of each of the four terms.
() As f[2')(A + 1) = 0, the residue of(u — (A + 1)) " Uy () is 0.

(i) The residue of(p — (A + 1))71U2(u) is equal toUy(A + 1), which coincides with
Ro[2"](A + 1) f5[2"](A + 1), therefore belongs t&y) ™ .

(i) As f'[2'](A+1) = 0, the pole of (u ()\+1))_1U3(u) is of order 1, and the residue
is a linear combination of theu [2”](A + 1), therefore belongs téy) " .

(iv) Finally, the pole of (1 — (A + 1))_1U4(u) in A+ 1 is, a priori, of order2 :

R S P (O

2ir Sy =0+ 1) (Gi — g+ B[] Ro[2"] (1) fol2"] (u)) dp.  (C.4.5)

The term (C.4.5) is itself the sum of an elementsp} ™, cf. (iii), and of

1 N[0!

W[2"]()

ﬂ i1 m <G]£ —gi—BO[ﬁ”/] 9%0[@’/]()\4—1) (7“)\+172dF1)> d,LL (C46)
Y(A)+

By constructiong’, is the couple of traceg. B'[#'|®°[2'] . Therefore

— g+ B[2]Ro[2) (N + 1)(7“”1’2611«“) =g+ U'[2"],

where

U] = BY[2]0°27] — B2 Ro[27] (A + 1) (L'[27]2°[27]).
The m -component function?! [ 2] belongs toz> (&, 7' ) by virtue of Lemmas C.4.2
and C.4.3. Gathering the results f@' , we have obtained

Lemma C.4.4 The first shadow singularityp![2”] is the sum of®}[2’] which belongs to
=&, H™) and of &} :

ol = —/ W[ ‘/V[ (i(i)nl <gi\111[35"]) dy, (C.4.7)

where U'[2’] belongs toz>(&, 5, 7*).

C.5 THE RELATION OF COMPATIBILITY

Our aim is to show that the coefficient in front of the tefm— (A +1))~2 in the Laurent
expansion of(u — (A + 1)) A [27] () (g+ Ut[2']) iszera As A4[2"](p)~! hasits a
pole of order1 in X\ + 1, the necessary and sufficient condition for this coefficient to be
zero is that

g+ U2 €rg N [2](N + 1), (C.5.1)

which is the “relation of compatibility”.
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Lemma C.5.1 Let A be of the form; + k with k € Z. Let 2’ € &. Then the range
of .47 [#7](\) is the subspace of thé&',... 6™ b!,...,b™) which satisfyd" = —b" for

s Yo
h=1,...,m.

PROOF Letusfix 2/ and let us drop it in the notations. In the case when the ragtsare
distinct, according to [CoDa43], .+ (x) has the general structure, by x m blocks:

_(E(p) O e BT —eT B F*(p) 0
JV(:“J) - ( 0 E(M)) <_ei7ru%+ efiﬂ/t%f ) ( 0 F’(,u) )
where E(u) is a diagonal matrix everywhere invertible except on a finite number of inte-
gers, F*(u) are everywhere invertible and the two matricBs are invertible, due to the
ellipticity of the boundary value problem, see [CoD&4]. The statement of the lemma for

i = X Is straightforward in this case. The general case whereatﬁeare not supposed
distinct is obtained by perturbation. [

Lemma C.5.2 Let X\ be of the formi + k& with k£ € Z. Let ¥ belong to$, . Then
g¥=—g V.

PROOF Let ¥, denote the components of , for h = 1,...,m. The componentV,
belongs toﬁéif’h , which means that there exists functioplhé meromorphic ina. and such
that
U, = / (aC + )M pf () da + / (¢ +al)* " py (@) da.
la|=6 la|=5
It remains to compute the tracgs of ¥, . We use the formulae

VaY g . Y ) § a
(aC + () —C(l—l—ozz) and (¢ + a() —§<1+a<> .
There holds (sinceéa| < 1)
i T i C\* i ¢ r —2;
CH=ret, (M =re (1 + az) = (1 + ae®®), <1 + az) = (1 + e 2~

Whence

gV, = ei(’\_ph)”/l | 5(1 +a)*Prpt(a) da + e_i(’\_”h)“/| | 5(1 +a)*Prpy () de

g, U, = e_iO\_Ph)ﬂ'/

(1+ oz)’\_php,t(oz) da + ei(’\_ph)”/ (1+ oz)’\_php}‘l(oz) da
|a|=8

|a|=8
As \ = % + &k, we have obtained the lemma. ]

The consequence of Lemmas C.5.1 and C.5.2d62’] is now clear: (C.5.1) holds.
Therefore the functionV’}[2] defined in (C.4.7) also belongs t6>(&, ") . Which
means that, finally, the first shadow singulariby[2'] belongs to%> (&£, $,™), i.e. satis-

fies at its degree of homogeneity exactly the same proper’as’] , see Lemma C.4.1.
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The proof of this property can be immediately generalized to the following:

Proposition C.5.3 Let A € C of the form 1 + & with integer k. Let F[2'](r,0) belong
to (&, $H52Y) and G+[2”](r) be the traces ord = £ of a m-component vector
function U[2'] € (&, $, ") . Then theN -component functiorb[2'] defined as

1

2= 5

/ o' [2°0#")2)] ™ M (Lrciou) (> F.r?G)) [#7) 1) g

belongs o> (&, $7) .

Therefore, with the help of Lemmas C.4.2 and C.4.3, we see that the procedure for the
analysis of the successive shado®s ..., ®” is recursive. Therefore for ajp ¢ N, &P
belong to€ > (&, ﬁé“’) and, thus, do not contain any logarithmic term.

C.6 ABSENCE OF LOGARITHMS , GENERAL RESULTS

Examining the arguments of the proofs of Lemmas C.4.1 to C.4.3 and Proposition C.5.3,
we can see that, in fact, the result we have proved does not use any ellipticity in the edge vari-
able 2’ € &, only the smooth dependency. In the next statement, we select the hypotheses
which are sufficient to obtain our result on the absence of logarithms in shadow singularities:
Hypothesis C.6.1Let »”' — (L° B°)[2’] be €=(&) with values in the spac®pi:* (R?)
of (N x N) elliptic systems homogeneous of ordgd with constant coefficients ifR?,
with complementing boundary conditions homogeneous of degree (p1, ..., p,) With
constant coefficients. The Mellin symbol ¢£.°, v, B°)[2”] is denoted byA°[2"] with ~_
and -, the traces on{(y1,y2) | y1 < 0} from below and from above respectively.

Foranyj € N, let »' — (L’, B)[»"] be a matrix-function with coefficients? ,[»”]

and Bivé[%’] , (&) with values in the space of operators
Op*(R* for Lj, and Op”/(R®) for By,

where for p € Z, Op?(R?) is defined as the space of finite linear combinations with
%>(&) coefficients of partial differential operators of the fogti’,, 05 with [5|—|5| = p.
We denote the tripl L7, v, B7)[2”] by 27[2]. n

The proofs of Lemmas C.4.1 to C.4.3 and Proposition C.5.3 then yield

Theorem C.6.2 Let (L7, B7);>, be a sequence of operators satisfying Hypoth€s& 1
Let A\ = 1 + &k with k € Z and lety()\) be the circle with center and radius ; . With
the function(2’, u) — (F,c+)[2'](1) supposed to b&s> (&) in #’ and analytic in
with values inL?(—m, ) x C™ x C™, we define the following leading singularity, which is
a generalization ofC.2.3)

2 = [ [ 2 (w)] T (62 () i,
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and its sequence of shadoW$”|[2"]), according to DefinitiorC.2.1 Then, for any integer
p >0, ®[2'] belongs toz>(&, $,*7) . In particular ®*[2'](r,0) can be written in the
form r* P (27, 0) with ¢ € €°°(& x [, 7]) @ CV.

In fact this statement extends to the wider class of Agmon—-Douglis—Nirenberg systems
with covering boundary conditions:

Hypothesis C.6.3Let N ¢ N, ¢ = (01,...,0n), T=(T1,..-,TN)
m=z(oc1—m+...+on —Tn)

and p = (p1,...,pm). Let 27 — (L% B%)[2'] be €>(&£) with values in the space
Opind(R?) of (N x N) Agmon-Douglis—Nirenberg elliptic systems homogeneous of or-
der o, — 7, with constant coefficients irR? , with complementing boundary conditions
homogeneous of degreg, — 7, with constant coefficients.

Foranyj € N, let 2’ — (L7, BY)[2'] =: 2/[2’] be a matrix-function with coefficients
Lj, [#'] and Bj, [»'], €*(&) with values in the space of operators

Op’* ™7 9(R*) for Li, and Op” ™ /(R?) for Bj,,
with Op?(R?) as in Hypothesis C.6.1. n

The Mellin transform and the Cayley representation can be used with the same success in
the framework of Agmon—-Douglis—Nirenberg systems, see [CoDa2, CoDa4], which allows
to obtain:

Theorem C.6.4 Let (L7, B7);>, be a sequence of operators satisfying Hypoth€s&3
Let A\ =3 +k, v(\) and (F,a+)[2'](1) be asin Theorer.6.2 We define the following
leading singularity:

W) =gz [T 0] (o)l )

and its sequence of shadoW$”[2”]),, by an obvious modification of Definitid®. 2.1, with
B= (01, ,ON,P1,-, Pms P15 -- - Pm) @nd p replaced withy — 7 as above.

Then ®7[»'] is homogeneous of multi-degrée+ p — 7, i.e. its j -th componentd’
satisfies®?[2"](r,0) = rP ", (27,0) with ¢p; € €°(& x [-7,7]).

We obtain as a corollary (and a generalization of Theorem A.4.3) that the asymptotics
along a crack edge of the solutions of Agmon—-Douglis—Nirenberg systems associated with
coercive bilinear forms contain no logarithmic term:

Corollary C.6.5 Let (L, B) be an (N x N) Agmon-Douglis—Nirenberg elliptic system of
order o), — 7, with smooth coefficients ilR"*! , with complementing boundary conditions
homogeneous of degreg, — 7, with smooth coefficients. Let us assume thatB) is
associated with a coercive bilinear form. Lgf,.. := max{pi,...,pm}. Any solutionu
of problem(C.2.1) (with a smooth right hand sidef ) which belongs toH* " (W) with
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s > pmax has the following asymptotic expansionas- 0: For any integer K > kg

ic Y patho- T2, 0) Z Zc Y pathe Tyh(2'0)  (C.6.1)

j=1 k=ko+1 ] 1
+ Ureg, K + Urem,K

where k, is the smallest integer such thétjL ko > s — 1. The regular partu,e, i IS in
€>°(R"*1) . The remainderu,.,, x belongs tos’*+=7(W,) and is flat of orderK — =
near & .

C.7 ANGULAR DESCRIPTION OF SINGULAR FUNCTIONS

For simplicity, let us go back to the situation where Hypothesis C.6.1 is satisfied and let
us consider®’[2”] like in Theorem C.6.2, as well as its sequence of shadoW$+"]),, .
Theorem C.6.2 tells us thak”[ 2] belongs toz> (&, $, ") , which means that there exist
meromorphica — g [2”](a) (with €>(&) dependence o) such that

Ply'] = al +OMPgt2'(a) da alOM? g7 [2(a) da .
i) = [ (e D) das [ (Crad el d

|a|=8
But, in fact, the vector-functiong * [2”] are nolarbltrary meromorphic functions in the unit
disc: their poles belong to the set of the roc{izs»z+ oy , cf (C.3.4).

.....

As a consequence, as we are going to show, itis pOSS|bIe to gieelalar representation
of the ®?[#”], if we assume

($c1) The multiplicites " of a[»”] are constant or¢’.
Let «[2’] denote the se{(aﬁi[ ,’],né )} of the roots with their multiplicities.
Definition C.7.1 Under hypothesig$c;), forany © € C and p € N, let us denote by

(&, 9k, ,) the subspace of homogeneous functigiis’] € H* which admit a represen-
tation as:

szLéM+WW]H&H/ C+allq[#)@) da  (C.T.0)

|ar|=6

where the functions;™[2’] and ¢ [2'] are meromorphic ine, € in 2, with poles
only in the rootso;/[2”] of order < pn; and o, [2'] of order < pn, respectively. Let
¢>(&, Hk, ,) bethe spac&™ (&, HL ) @ CV . n

With these definitions, we have the following properties
() By (C.3.5), the kernel elememméf (1) belong toa>(&, 97, 1) -
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(i) The definition (C.3.8) 0ofR, gives us that for any, € C and anyp € N
Ro acts from ¢>(&, HL %) into €(&, Hh 1)
(iii) The proof of Lemma C.4.2 yields that for apyc C and anyp € N
W acts from ¢>(&, HL ) into €>(&, HEHT) x €2(&, HLHP).

Reuvisiting the proofs of Lemma C.4.1 and Proposition C.5.3 we obtain

Theorem C.7.2 Under the assumptions of Theor&@r6.2and under hypothesi&Hc; ) , for

any p € Ny the edge singular function®? belong to4>° (£, .s')iflfﬂ) .

Since there holds for any € C, for any o and oy € C

(ag + Q) (¢ +O)F + Z Gk (@ = )¢ (¢ + ¢ *
E>1

C+aQ) = ((+aQ)"+ Z Gk (0 = ) *C* (¢ + )",

k>1

any function® in €°°(&, 9%, ) has a representation as

my pn/—l m_ pn, —1
¢ = Z Z Ck §+C u kczz “’Z Z Ck C+ae ]C)ui Ck,z[%,L
=1 k=0 (=1 k=0

with (&) coefficientSCkie . As a corollary of Theorem C.7.2 we obtain

Corollary C.7.3 Under the assumptions of Theor€r6.2and under hypothesi€Hc; ) , for
any p € Ny the edge singular function&? have representations as

m+ (p—i—l)n[ -1

Z Z CF a2+ Q) e o] (C.7.2)

(p+1)n, -1

+z z FCHa 1) e 2, e ().
(=1 k=0

Let us denote byl , for w = £1 the fundamental functions
Uy (27,r,0) =af[2'1C+¢ and W, _(27,7,0) =+ o, [2']C.
The comparison with the fundamental angular functions introduced in (B.8.3) is quite simple:

Since, if L is real, ' ,
ilof — 1) and 7, = i(1—ay)

= aj +1 a, +1

)
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there holds
Upo(r,0) = (g + 1) rab,(0), £=1,....n%, w= L1,

and conditions($s) and ($Hc;) are two formulations of the same assumption.
Coming back to the expansion (C.7.2), we note thatihecomponent vector functions

(p+1)nf -1

+1 —1-k
i (+"y) = Y ¢ e (2" y) ey 2]
k=0
(p+1)n, —1

= +1)n, —1—k _
dp (+'y) = Y T Gy e [)

k=0

are polynomial iny , therefores’>(R"*!) , and there holds

= 5" S TN gy ar (o y). (C.7.3)

w=1t1 /(=1

If condition ($a3) holds (i.e. if nf =1,¢=1,...,m)(C.7.3) takes the simpler form
Ol = Y Y (7 ) d (2 y), (C.7.4)

which means that the singular facto@w do not depend omn .

As a final consequence of formulas (C.7.3) and (C.7.4), we obtain “modular representa-
tions” of the solutions of elliptic BVP in the domaift = R"™ \ .# :

Theorem C.7.4 Let the hypothese&),1), (Ha2) and ($Hc;1) be satisfied.
(i) Any solutionw of the boundary value problefi.1.1) with smooth right hand sidef
has the following asymptotic expansionas- 0 : For any integer K > 0

= ST S a0 ) 4 v btk (C75)

w==*1 (=1

where the vector—coefficienti;g‘ﬂ are €>(R"™) and the regular partSuc, x and wem i
are as in PropositiorA.4.2.

(i) If the multiplicities n; are all equal to 1, cf hypothesis($43), then v admits the
global decomposition

Z Z Z% % 7y dgw(ﬁ’ y) + Ureg,c0 ; (C76)

w==*1/¢=1

where all vector-coefficientd°, and u,e; o, are ¢>(R™"*).
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Remark C.7.5 The multiplicities n; are in fact the order of the poles of the inverse of the
Cayley symbolL“(«)~! in «f . They can be smaller than the total multiplicity of . An
example for this is the case of isotropic elasticityld? where L*(a)~! have 0 as only
pole, but the multiplicity is2 (and not3). The fundamental function¥,,, are simply

U, =C=(yn—iy) and V_=(=(y +iy),
and expansion (C.7.5) takes the form, compare with [ChkDuZ2]
w = AN (5 y) + I AN )+ U i + Ueempe s (CT.7)

with €= (R"1)N coefficientsd 'L’ . n
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