
NUMERICAL INVESTIGATION OF A BOUNDARYPENALIZATION METHOD FOR MAXWELL EQUATIONSM. COSTABEL, M. DAUGE AND D. MARTINIRMAR (CNRS, UMR 6625), Universit�e de Rennes 1Campus de Beaulieu, 35042 Rennes Cedex, FRANCEE-mail: dauge@univ-rennes1.frIt is well known that, in the presence of non-convex corners or edges on the bound-ary, nodal �nite elements associated with a conformal curl-div formulation do notconverge to the correct limit when the electric or magnetic boundary conditionsare also imposed in the discrete space. We formulate and investigate in a simpletwo-dimensional situation a method where the boundary conditions are not im-posed in the discrete space but obtained by a penalization method, which amountsto a sort of impedance condition.1 Regularization by a divergence term and penalization of theboundary conditionWe investigate the spectral problem for Maxwell equations with perfect con-ductor boundary conditions in a bounded domain 
 which we assume for themoment to be 3-dimensional. This problem consists in �nding non-zero L2electric and magnetic eigen�elds E and H , and non-zero eigenfrequency !such that curlE � i!H = 0; curlH + i!E = 0 in 
;E � n = 0; Hn = 0 on @
: (1)Here n denotes the unit outer normal on @
 and Hn is the normal componentof H on the boundary.One of the two �elds can be eliminated from equations (1), let us say E,and we obtain for the magnetic �eld the problem curl curlH = !2H withthe divergence constraint divH = 0 and the boundary condition Hn = 0.This latter problem admits a variational formulation in the space XT(
) ofL2(
) �elds u with L2(
) divergence and curl, and zero normal trace un:Find non-zero H 2 XT(
) and non-zero ! such that:8H 0 2 XT(
); Z
 curlH � curlH 0 = !2 Z
H �H 0: (2)The above bilinear form (curl �; curl �) is not coercive on XT(
). To curethis, a standard procedure is the penalization by the (div �; div �) form: forany s > 0, we introduce the new problem:CoDaMa: submitted to World Scienti�c on November 5, 1999 1



Find non-zero u and ! such that:8v 2 XT(
); Z
 curlu � curlv + s divu div v = !2 Z
 u � v: (3)Any solution (u; !) of problem (2) has zero divergence, thus is solution of(3) for all s > 0. But if 
 has non-convex edges (which is a rather standardsituation if 
 is a region outside a conductor) then solutions u do not belongto H1, in general. If one wantsa to use curl-div conforming elements (thuscontinuous) for the FEM Galerkin approximation of problem (3), the discretesolution converges to the spectrum of a Lam�e problem posed in the subspaceHT(
) of H1(
) �elds u satisfying the boundary condition un = 0, see 4 wherethe case of electric boundary conditions is investigated.The reason for this phenomenon is the following: the space HT(
) isclosed in XT(
) for the natural norm of this latter space. Therefore anyGalerkin method using a discrete space of continuous piecewise polynomialcontinuous �elds, thus included in HT(
), yields a discrete solution in HT(
),and is consequently unable to approach a solution of problem (3) which doesnot belong to HT(
).But smooth �elds are dense 2;3 in the larger space W de�ned asW = �u 2 L2(
); divu 2 L2(
); curlu 2 L2(
); un 2 L2(@
)	:Therefore, there is no theoretical obstruction to the discretization by continu-ous elements in the space W. But we have to retrieve the boundary conditions.This can be done by the introduction of the new bilinear form a[s; �] de�nedon W �W for s > 0 and � > 0 as:a[s; �](u;v) = Z
 curlu � curlv + s divu div v + � Z@
 un vn: (4)Then the boundary conditions satis�ed by solutions of the problemu 2 W; 8v 2 W; a[s; �](u;v) = !2 Z
 u � v; (5)are all \natural" and given bycurlu� n = 0 and s divu+ �un = 0 on @
; (6)whereas the tangential boundary conditions associated with problem (3) arestill curlu� n = 0 but the normal one is simply un = 0.aPossible reasons for trying to use nodal elements instead edge elements 5;1 can be1) The wish to adapt pre-existing nodal codes,2) The need to couple eletromagnetic data with hydrodynamics,3) The development of simple p or hp versions,4) Mere curiosity.CoDaMa: submitted to World Scienti�c on November 5, 1999 2



2 Spectrum of the penalized problemTaking as test functions in problem (5) the �elds gradients of a potentialv = grad' where ' is any function in the domain D(�Neu) consisting of thefunctions  2 H1(
) satisfying � 2 L2(
) and @n = 0 on @
, we �nd thatthe L2 function p := divu is solution of8' 2 D(�Neu); s Z
 p�' = !2�� Z
 p'+ Z@
 un '� : (7)Next we note that the solution q 2 H1(
) of the Neumann problem, �s�q =!2p in 
 with s@nq = !2un on @
, satis�es8' 2 D(�Neu); s Z
 q�' = !2�� Z
 p'+ Z@
 un '� : (8)Comparing (7) and (8) we obtain that p� q is orthogonal to the range of �from its domain D(�Neu), that is p � q is a constant. Combining with theboundary condition s divu+�un = 0 in (6), we obtain that p solves the Robinproblem �s�p = !2p in 
 with s@np+ !2 s� p = 0 on @
. Going back to thevariational formulation we have obtainedLemma 1 If (u; !) solves problem (5), then p := divu belongs to H1(
) andsolves 8' 2 H1(
); s Z
 grad p grad' = !2�Z
 p'+ s� Z@
 p'� : (9)Theorem 2 Let s > 0 and � > 0 be �xed.If (u; !) solves problem (5), then (i) or (ii) holds:(i) divu = 0 and (u; !) solves problem (2).(ii) p := divu is an eigenvector of the Robin problem (9) and curlu = 0.Proof. We consider p := divu. If p = 0, then (u; !) obviously solvesproblem (2). If p 6= 0, by Lemma 1, p is an eigenvector of the Robin problem(9). Let us introduce w de�ned as �sgrad p=!2. We check that w belongsto W and that (w; !) solves problem (5). Thus the �eld w is in situation (ii).Finally, the �eld u�w, if non-zero, is in situation (i).3 Two-dimensional caseWe now assume that the domain 
 is two-dimensional. We consider themagnetic eigenproblem corresponding to (2)8H0 2 XT(
); Z
 curlH � curlH 0 = !2 Z
H �H 0; (10)CoDaMa: submitted to World Scienti�c on November 5, 1999 3



where curlu is the scalar curl @1u2 � @2u1 and the space XT(
) is de�nedsimilarly with curl replaced by curl. Note that such solutions correspond tosolutions of (1) in the cylinder domain 
 � R with an electric �eld orientedalong the axis of the cylinder and a transverse magnetic �eld, both beinginvariant by translation. We associate to (10) its regularized-penalized version(6) with a[s; �] de�ned asa[s; �](u;v) = Z
 curlu � curlv + s divu div v + � Z@
 un vn: (11)Then  := curlu plays a similar role as the divergence and we can study separately by considering test functions of the form curl' with ' in thedomain D(�Dir) of the Dirichlet problem, i.e. ' 2 H10(
) satisfying �' 2L2(
). Theorem 2 has now a more precise version.Theorem 3 Let s > 0 and � > 0 be �xed.If (u; !) solves problem (5), then (i) or (ii) holds:(i) divu = 0 and (u; !) solves problem (10). Moreover  := curlu is aneigenvector of �Dir with eigenvalue !2 and u is proportional to curl .(ii) p := divu is an eigenvector of the Robin problem (9) with eigenvalue !2and curlu = 0. Moreover u is proportional to grad p.As a consequence, in two-dimensional domains there exists an alternativeway to determine the solutions of problem (5) because they all derive frompotentials (grad or curl). We will take advantage of this to estimate theerrors of the computations.4 Numerical testsThe domain 
 is the symmetric L-shape domain 
 = �0 n�1 where �0 is thesquare [0; 1]� [0; 1] and �1 the square [ 34 ; 1]� [ 34 ; 1].We use four di�erent meshes which are regular and uniform, with trian-gular P1 or P2 elements. We �x s = 30 and vary � by geometrical incrementsTable 1. Combinations of meshes and elementsName Elements h # of trianglesMesh 1 P1 or P2 14 40Mesh 2 P1 or P2 18 160Mesh 3 P1 or P2 116 640Mesh 4 P1 132 2560CoDaMa: submitted to World Scienti�c on November 5, 1999 4
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lambdaFigure 1. Lowest eigenvalues with Mesh 2 and P2 elementsfrom 1 to 24000. We compute once for all the (scalar) Dirichlet and Robineigenvalues, then compute the Galerkin approximation of problem (5). Foreach computed eigenpair (uh; !h), we also compute the L2 norms of curluh,divuh and of the normal trace on the boundary uhn, each of them normalizedby the L2(
)-norm of uh. Thus we can sort the eigenpairs according to thevalue of the ratio k curluhk2L2(
)sk divuhk2L2(
) + �kuhnk2L2(@
) :In Figure 1, we plot !2 versus � and we represent by bullets and circles thecomputed eigenvalues for which this ratio is larger (curl type) and smaller(gradient type) than 1 respectively. The solid horizontal lines are the eigen-values of �Dir (case (i) in Theorem 3) and the curved solid lines are the Robineigenvalues (case (ii)).CoDaMa: submitted to World Scienti�c on November 5, 1999 5
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Figure 2. First eigenvalue of curl type (Mesh 2 and P2)In Figures 2 and 3, we plot the �rst and second eigenvalues of curl type(i) along with the parts in the energy of their curls, divergence and tracek curluhk2L2(
) ; sk divuhk2L2(
) ; �kuhnk2L2(@
) :
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Figure 3. Second eigenvalue of curl type (Mesh 2 and P2)CoDaMa: submitted to World Scienti�c on November 5, 1999 6
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Figure 4. Errors on the �rst eigenvalue of curl typeIn Figures 4 and 5 we plot the relative errors corresponding to the the�rst and second eigenvalues of curl type, with Mesh 1 to 4 with P1 elements(dark lines, from thickest to thinnest) and with Mesh 1 to 3 with P2 elements(lighter lines). We evaluate these errors eh in the following way:eh := �j!2 � !2hj+ k divuhk2L2(
) + �kuhnk2L2(@
)�=!2:
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Figure 5. Errors on the second eigenvalue of curl typeCoDaMa: submitted to World Scienti�c on November 5, 1999 7



The behaviors of the errors in Figures 4 and 5 are very di�erent be-cause the �rst eigenfunction has the strong non H1 singularity whereas thecoe�cient in front of this singularity is zero for the second eigenfunction forsymmetry reasons. We see that we have convergence as h ! 0 (albeit slow)in the case of the second, regular, eigenfunction, whereas for the �rst eigen-value only for low values of � a sort of convergence is observable. The lack ofconvergence for large � cannot be improved even by strong mesh re�nementsnear the reentrant corner. Further studies will be necessary to determine ifthere is a kind of locking mechanism involved that can be overcome by thechoice of higher order elements or h-p methods.References1. D. Boffi, P. Fernandes, L. Gastaldi, I. Perugia. Computationalmodels of electromagnetic resonators: analysis of edge element approxi-mation. 1997.2. P. Ciarlet, C. Hazard, S. Lohrengel. Les �equations de Maxwelldans un poly�edre : un r�esultat de densit�e. C. R. Acad. Sc. Paris, S�erieI (1998). 326 (1998) 1305{1310.3. M. Costabel, M. Dauge. Un r�esultat de densit�e pour les �equationsde Maxwell r�egularis�ees dans un domaine lipschitzien. C. R. Acad. Sc.Paris, S�erie I 327 (1998) 849{854.4. M. Costabel, M. Dauge. Maxwell and Lam�e eigenvalues on polyhedra.Math. Meth. Appl. Sci. 22 (1999) 243{258.5. J. Nedelec. Mixed �nite elements in R3 . Numer. Math. 35 (1980)315{341.
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