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1 Maxwell eigenfrequency problem

The problem consists in finding the non-zero frequencies ω > 0 such that
there exists an electromagnetic field (E,H) �= 0 solving the equation

curl εE − iω µH = 0 and curlµH + iω εE = 0 in Ω, (1)

in the cavity Ω. We assume perfect conductor boundary conditions, that is
E×n = 0 and H ·n = 0 on ∂Ω, where n denotes the outer unit normal on ∂Ω.
Concentrating on the problems posed by the singularities of the boundary
of Ω, we assume that the dielectric material filling Ω is homogeneous and
isotropic, that is, after a possible change of unknowns ε = µ = 1.

We want to solve (1) by a Galerkin procedure. The first step is to propose
a variational formulation for (1). Eliminating H from the equations, we find
the formulation

E ∈ H0(curl;Ω), ∀E′ ∈ H0(curl;Ω),∫
Ω

curlE · curlE′ dx = ω2

∫
Ω

E · E′ dx, (2)

where H0(curl;Ω) is the space of L2(Ω) fields E with curlE ∈ L2(Ω) and
tangential component E×n = 0 on ∂Ω. Testing against gradients of functions
ϕ ∈ H1

0 (Ω) we find that if ω �= 0, then div E = 0. Conversely, any such
gradient is a solution of (2) with ω = 0.

There are two classes of strategies to overcome the difficulties generated
by the presence of this big kernel:

(i) Discretize (2) directly by special families of finite elements possessing
a discrete deRham complex property: these are the edge elements first
introduced by Nedelec [3, 4].

(ii) Regularize (2) by a term 〈div,div〉 and use more standard elements.

Strategy (i) is widely spread but, still, it is worthwhile to develop an alter-
native, which will have different advantages.
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At first glance, strategy (ii) is a very bad idea if Ω has non-convex corners
or edges. The reason for this is now well known: The variational space for the
continuous problem is

XN =
{
E ∈ H0(curl;Ω), div E ∈ L2(Ω)

}
(3)

whereas any finite element field which is conforming for the bilinear form
〈curl, curl〉L2 + 〈div,div〉L2 is continuous across the faces of the elements,
therefore belong to the subspace HN ⊂ XN of H1(Ω) fields. But HN is closed
in XN for the norm ‖ curl ‖

L2 + ‖div ‖
L2 and finally HN �= XN as soon as

Ω has reentrant corners in 2D and reentrant edges in 3D. Thus we are in the
somewhat unusual situation where the convergence of the Galerkin method
does not mean that the limit is the solution of the continuous problem.

2 Weighted regularization

In order to overcome this difficulty due to the lack of density, a weighted
regularization was proposed in [1], that is replacing the regularization term
〈div,div〉L2 by the scalar product 〈div,div〉Y in another functional space Y
containing L2(Ω) and contained in H−1(Ω). Such a space can be conveniently
realized as a weighted L2 space, where the weight is a power γ, 0 ≤ γ ≤ 1, of
a distance function d : x �→ d(x) to the reentrant corners or edges of Ω. The
variational space is, instead of (3)

XN [γ] =
{
E ∈ H0(curl;Ω), d(x)γ div E ∈ L2(Ω)

}
(4)

and the corresponding variational formulation is (with α := 2γ and s > 0
chosen ad libitum)

E ∈ XN [γ], ∀E′ ∈ XN [γ],∫
Ω

(
curlE · curlE′ + s d(x)α div Ediv E′

)
dx = ω2

∫
Ω

E · E′ dx. (5)

It is clear that the eigenpairs (E, ω) with ω �= 0 of (2) are eigenpairs of (5).
Any gradϕ with ϕ ∈ H1

0 (Ω) is an eigenvector of (2) with ω = 0. For problem
(5) also the “spurious” eigenvectors are gradients gradϕ with ϕ ∈ H1

0 (Ω)
and dγ∆ϕ ∈ L2(Ω): ϕ is such that dγϕ is an eigenvector of the self-adjoint
operator A[γ] := dγ∆ dγ with Dirichlet conditions. One can prove

Theorem 1. The eigenpairs (E, ω) of problem (5) can be split into two types
(i) div E = 0 and ω �= 0: (E, ω) is then a Maxwell eigenpair.
(ii) curlE = 0 and ω2 = sν with ν and eigenvalue of the operator A[γ].

It is important to know that the spectrum of A[γ] is separated from 0:
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Theorem 2. The eigenvalues of A[γ] decrease when γ increases.
For any γ ≤ 1, A[γ] is positive definite.
For any γ < 1, A[γ] has a compact resolvent.

From Theorems 1 and 2 we know that the continuous formulation (5) can
be used to determine the Maxwell eigenvalues for any 0 ≤ α ≤ 2. Now, we
have to investigate whether there exists α so that smooth fields are dense in
XN [γ]. The following statement is deduced from [1]

Theorem 3. Let Ω be non-convex polygon or a non-convex polyhedron. Then
there exists γΩ < 1 such that for any γ, γΩ < γ < 1, the space HN of H1

vector fields satisfying the electric boundary condition is dense in XN [γ]. If
Ω is a polygon, let ωΩ be its largest corner. Then γΩ = 1 − π/ωΩ.

There holds a similar formula for polyhedra. Moreover, it is proved in [1] that
for the source problem in a polygon, if nodal elements of degree p ≥ 5 are
used, we have a convergence rate in energy norm for the h-version of finite
elements in hτ−ε for all ε > 0, where

τ = min
{

γ − 1 +
π

ωΩ
, −1 +

π

ωconv
,

π

ωΩ

}
,

with ωconv the largest convex angle of Ω.

3 Experiments in an L-shape domain

The condition p ≥ 5 is not necessary for practical convergence of the method
(it was simply comfortable for the proof). On the other hand, owing to the
classical structure of the singularities (though unbounded) we can guess that
a geometrical refinement of the mesh near singular points of the boundary
will improve the performance of the method.
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Fig. 1. Meshes on the L-shape domain

Figure 1 presents our first domain of computation Ω with the first two
levels of refinement of the mesh. Here we use a ratio 4.
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We have computed the first Maxwell eigenvalue by a Galerkin discretiza-
tion of formulation (5) with α = 2 in eight nested meshes where the number
of layers increases from 3 to 10 and with nodal elements based on tensor
Qp polynomials, p ranging from 1 to 10. Note that, since the edges of the
boundary ∂Ω are straight, the essential boundary condition E × n = 0 is
implemented exactly. The computations are done with the Finite Element
Library Mélina [2].
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Fig. 2. Relative errors for 1st eigenvalue

In Figure 2 relative errors for the first Maxwell eigenvalue are represented:
The comparison value ω2 = 1.4756218241 is obtained by solving the Neu-
mann problem on the same domain with the finest mesh and p = 10 — the
2D Maxwell computations work as a benchmark problem since the Maxwell
eigenpairs are the (curlϕ,

√
ν) with ϕ eigenvector of the Laplace Neumann

problem with eigenvalue ν.
The abscissae represent the number of degrees of freedom, and the or-

dinates the relative error. Each line connects the relative errors for a fixed
number of layers and as p goes from 1 to 10. The numbers above the lines
indicate the values of the degree p.

In Figure 3 we represent the convergence rates of the previous relative
errors with respect to the number N of degrees of freedom (N is proportional
to p2 on each mesh) and as p increases. The hp effect is clearly visible.
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Fig. 3. Convergence rates of relative errors

4 Experiments in a curved L-domain

The domain Ω with curved bound-
aries (arcs of circle A1, A2 and A3

of radii 1, 2 and 3 respectively) for
which we did the computations is rep-
resented opposite. The discretization
of its boundary depends now on the
mesh we choose and on the degree q
of the geometrical approximation.
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Fig. 4. The curved L-domain

The meshes are similar to those constructed in the straight L-domain
of Section 3 and refined by adding successive layers of elements around the
reentrant corner. Let m be the number of layers of the mesh. Whatever
the value of m we have 4 elements abutting at the exterior arc A3, and 2
at the interior arc A1. Along A2 there are m elements. We use a geometrical
approximation of degree q ranging from 1 to 6, independently of the functional
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degree1 p. The values of q and m determine different approximations Ωq,m

of Ω, which consist in defining each element by a grid of (q + 1)2 of Gauss-
Lobatto points. For example, when q = 1, the discretized domains Ω1,m are
polygonal approximations of Ω, cf Figure 5.
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Fig. 5. Meshes on the approximate curved L-domains Ωq,m, q = 1, m = 3, 4

If we represent the relative errors for the first eigenvalue with the eight
best geometrical approximations Ω6,m with m = 3, . . . , 10, as p increases, we
obtain a graph very similar to Figure 2.

We prefer to investigate the influence of the geometrical degree q on the
quality of the approximation. We represent in Figures 6 and 7 the relative
errors obtained by the computation of the first and second Maxwell eigen-
values with the variational formulation (5) on the meshes with 10 layers and
geometrical degree 1 ≤ q ≤ 6. The comparison is done with the Neumann
eigenvalues computed on the same mesh with q = 6.

We have to note that our approximation is now non conforming for two
reasons:

1. The domains of computation Ωq,m do not coincide exactly with Ω: the
boundary is approximated by piecewise curves of degree q. Only at the
grid points ai the boundary ∂Ωq,m of the approximate domain coincides
with ∂Ω.

2. The essential boundary condition E × n = 0 is implemented only at the
functional (Gauss-Lobatto) nodes bj . If and only if q = 1, these pointwise
conditions imply that E × n = 0 on ∂Ωq,m.

We can see the relative influence of the position of the geometrical nodes ai

and the functional nodes bj by modifying their position. If the ai are defined
from an equidistant grid and bj unchanged, the results are very similar.
1 The geometrical degree q is the degree of the local maps which transform the

reference element K̂ into the elements K. The functional degree p is the degree
of the interpolating polynomials in K̂ for the test and trial functions. The case
p = q corresponds to isoparametric elements.
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Fig. 6. Relative errors for the 1st eigenvalue
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Fig. 7. Relative errors for the 2nd eigenvalue
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If, on the other hand, the ai are Gauss-Lobatto points and the bj are
equidistant, we obtain for the second eigenvalue the numerical results con-
tained in Figure 8.
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Fig. 8. Relative errors for the 2nd eigenvalue with equidistant functional nodes

We see that the choice of equidistant nodes for the interpolation of the
boundary condition E × n = 0 is a very serious “variational crime” that
prevents further reduction of the error for degrees p ≥ 5. Note that this phe-
nomenon is only observed for vector boundary conditions and curved bound-
aries. It does not appear in scalar problems nor on domains with piecewise
straight boundaries.
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