Asymptotics near crack tips in hereditarily-elastic
anisotropic aging two dimensional body
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Abstract

A model involving a Volterra kernel is considered for a hétarily-elastic anisotropic ag-
ing two-dimensional body with a straight crack. The asyrtipsoof the time dependent
solution near the crack tips is investigated. We prove tie@pending on the regularity of
the material law and the Volterra kernel, these asymptatiessimple homogeneous func-
tions of degree% or have a more complicated dependence on the distance learib the
crack tips. In the latter situation, asymptotics involveuadtion of In» growing in time,
which requires a modification of usual fracture criteria.
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1 Introduction

Any elastic body is subjected to aging and creeping prosesthis means in particular that
the elastic properties of the body change in time, makingiesnal structure compatible with
its deformation state by a relaxation of stresses. Suchepsas are relatively slow, so their
modelization may neglect the dynamical effects and be dgngulasistatic equations where
the timet is only a parameter. For a proper description of aging visste or hereditary-
elastic materials, the postulated constitutive law betwseains and stresses usually includes
an integral operator with respect to the parameter

We do not consider here the models related to the evolutiogeometry of such aging
bodies,cf. [2]. So the resulting mathematical model of an aging bodegsathe form of a
system of partial differential equations with respect ®@dpatial variables = (x1, z5), and of
a perturbation in the form of an \Volterra integral operatithwespect to the parameter

Our paper is devoted to the mechanically relevant situatioere the body contains a crack.



1.A Crack in hereditarily-elastic aging body

We consider the case of a two-dimensional bétgontaining a crack modelized as a straight
segment where traction free boundary conditions are pbestr In the same way as in the

static problems, singularities may appear in solutionsichsnodels at crack tips. The precise
knowledge of these singularities is of main interest intine& mechanics.

In the case of the standard equations of pure linear elystibe asymptotics of solutions
near crack tips have been known since a long time: As apicaf the general theory of [16]
to plane angles of openingr, we obtain that the asymptotics at each tip are combination o
homogeneous terms of the form) (). Here (r, ) are polar coordinates centered at the tip.
Explicit calculations for isotropic materials prove thaet\’s (the singularity exponents) are
half-integers%, g The generalization of this result to any homogeneoiso&mopic material
law is due to [12] (see also [9] for a generality beyond etdsfi. The square root singularity
r1/2 for the displacement corresponds to an unbounded stressingularity—1/2.

Concerning homogeneouseptropic aging viscoelastic bodies, it is already showi[40,
24] and others, that the singularities of stresses at thekdrps are of the same form as in
the case of purely elastic bodies. However the stress ityeastors become time-dependent.
This can be explained by an application of the so-calledespondence principle, we refer the
reader to [38], [40] (see also Section 1.C for details).

In this paper, we make general assumptions on the instastamdasticity law (supposed to
be anisotropic and smooth), and on the relaxation kernpp@sed to have a sectorial inhomo-
geneity). We prove that the standard square root singylarit’? of stresses is combined with
atermX depending in an holomorphic way anr (“logarithmic packet”). Such behaviour of
singular solutions is shown in [34] for scalar problems, vexplicit calculations are available.

In view of its relatively slow growth as — 0 (see (1.17) in the sequel) this holomor-
phic functionX leaves unchanged the power order of the stress singulbiityever it makes
impossible to define the stress intensity factor (see (Ib#&)w) and to apply stress fracture
criteria.

In section 7 certain sufficient conditions are given for thesgnce of such logarithmic pack-
ets. Certain fracture criteria in mechanics of cracks cabaaeadily adapted to such changes
of the structure of singularities. Therefore an importasue for applications is to know the
precise conditions under which tegquare-root singularity subsisiis our context of aging ma-
terials. Using the approach of [8] (see also [9, 10]), we fewn section 6.A a positive answer
in the smooth case. More precisely, if the instantaneouskelsanatrix and relaxation kernel
are smooth functions of the spatial variables= (z;, x2) then the logarithms are totally ab-
sent in the asymptotic expansions. Let us point out thatehew the general anisotropic laws
make the angular parts of singularities different from tholstained in the case of instantaneous
elasticity problem.

There are explicit examples of hereditarily-elastic beda which logarithmic packets will
appear at crack tips. We provide such an example, which issienae representative and in-
structive since it shows that the well established statéimehe mechanical community that

“Pure square-root singularity of stresses are to be expgatethe case of the invariance,
with respect to the translations along the crack faces, efitistantaneous elastic moduli
and of the relaxation kernel”



is not true. Indeed, we obtain logarithmic packets for inttaeously isotropic homogeneous
materials provided that the crack is located at the intertaetween two different relaxation
kernels. Such a phenomenon may be the result of aging anceaalvskrved if, for example, the
body is made of two parts, both of the same material, butistpat different moments: So the
second part is added after the first one has already changed the aging process (cf. Remark
7.5). In our example, the instantaneous Hooke’s tensootsogic while the relaxation kernel
is also isotropic but takes different values in the upper lamer half-planes. We emphasize
that the presence of logarithmic packets is ensured by &iaelaetween the instantaneous
Lamé coefficients and the coefficients of relaxation keriéis relation resembles the famous
Dundurs relation [13] providing a condition for the preserf oscillating singularities at a
crack between two dissimilar isotropic elastic half-plane

The asymptotic forms are determined thanks to a particulagpgaty of cracks in purely
elastic media: In arbitrary anisotropic homogeneous bbdyrhain singularity exponent of
stresses is always equal tol /2, thereforeindependent of timeOur mathematical framework
does not apply to the case of time-dependent exponentgjiseasds the case of aging media in
reference domains with angles different fr@m (V-notch). There exist results [5, 6, 7, 25, 26]
on asymptotic behaviour of stresses in hereditarily-elagjing media for small times — 0
and large times — oo, but such results are unfortunately not sufficiently prettsbe used in
fracture mechanics. The asymptotic structure of physietddifor time-dependent exponents
still remains an open problem.

1.B Mathematical formulation of the problem

In the framework of creep theory [2, 3], we consider a heegiljt-elastic aging, anisotropic,
nonhomogeneous two-dimensional bddywith a straight crack) = Qg \ M where(), is a
smooth domain and/ represents the crack

M ={z = (z1,29) : |x1| <1, 29 =0} C Q. (1.1)

We denote the crack tipd, 0) and (-1, 0) by O and O™, respectively, and the crack surfaces
by M*. Thus the boundaryf? is the union of the exterior boundaf)), =: I and of the
crack surfaces\/*. Let n stand for the unit outward normal vector (column) to the lutarg
9. On M*, we haven = Fe, wheree, denotes the second basis vector1)’. Note that
the normal is not defined at the tigd"* (here and furthei stands for eithel or II). In the
sequel we treat dimensionless coordinates and, by regcalaachievd = 1.

Besides Cartesian coordinates, we need polar coordifiates) attached to each crack tip
O'. Of courser; = |z — O, and we choose; so that the crack/ is included in the lines
Yy = .

Equilibrium equations and boundary conditioaie written in matrix form as follows

{D<—vx>%<u;x,t> = flt), ceQ=Q\M, (12)

D(n(z))To(u;x,t) = g(a,t), xedQ\{OTUO1}.

Here f = (fi,f)" andg = (g1,92)" are the vectors ofolume forces and tractionse-
spectively, in the form of column vectors' (means transposition) ang(u; z,¢) stands for



Figure 1: The domain with crack.

the vector of stresseat the pointz and at the time, evaluated for thelisplacement vector
u = (uy,uz)" . Moreover,D(V,) denotes theé x 2-matrix of differential operators,

T+ (o 0 2729, (o e
D(vfﬂ> - (0 02 2—1/281 9 vx i 82 9 aj — ax] 3 j — 1,2 . (1.3)

The columne = (g11, £99, 2%/%¢15) T of height3,
e(u;x,t) = D(Vy)u(z,t),

denotes tharector of strains The factors2—'/2 are introduced into (1.3) in order to equalize
natural norms of the strain column above and the usual nostraih tensor of rank.

In an hereditary-elastic aging body,is determined according to tlenstitutive law
t
o(u;z,t) = A(x, t)D(V)u(z, t) +/ B(z,t,7)D(V)u(x,7)dT. (1.4)
0

Here, the3 x 3-matrix functionsA and B are theHooke matrixand therelaxation kernel
respectively. They are symmetric by definition and, funthere, A(z,¢) is supposed to be
positive definite:

ETA(z, 1) € > calé)* VEER?, x€Q, te(0,7) (1.5)

with a positive constant,. We make the following smoothness assumption on the cositei
of A: For afixed integer > 0,

|VIA(z,t)| <y, 5=0,...,¢, 2 €Qy, forae te(0,T), (1.6)

where VJw denotes the set of all derivatives of ordgeiof the functionw. In other words,
entries of A are /-times continuously differentiable functions ine €2y (in the body without
crack) and measurable bounded functions &[0, 7.



Since the relaxation kernel can possess a cylindrical &g (cf. [3]) in the vicinity of
the crack tips, we assume a weaker regularity hypothesthéomatrix B. Let p be a positive
function onQ, \ {O' U O™} which coincides withr; in a neighbourhood 00?, e.g.,p =
min{1, rr, i1 }. The relaxation kerneB satisfies the following weighted condition:

|VIB(x,t,7)| < cpp(x)?, j=0,....0, x€Q, forae. (t,7)€ T(T), a.7)
with the triangle
T(T) :={(t,7) : t € (0,T), 7 € (0,¢)}. (1.8)

Assumption (1.7) is sufficient for the existence of a solutioto problem (1.2)-(1.4).

However the determination of asymptotic properties of thiet®n «(x, t) requires stronger
hypotheses on the relaxation kernel. We assume that at eachtp O}, i = 1,11, B(x, -, )
stabilizes as;; — 0 towards a matrixB*(¢;, -, -) which only depend on the angular variable
¢i € (—m, m): For a suitablestabilization rateds > 3,

|V;<B($,t, 7—) - Bi(gpbta 7—))| S C,B Ti_j+6Ba j = Oa tee a€> VIS Q> (19)
fora.e. (t,7) € T(T)
where entries ofB' are [-times continuously differentiable ip; € [—, 7] and bounded in

(t,7) € T(T). Thus B* may have a jump through the cradk. We note that condition (1.9)
implies condition (1.7). Moreover, iB satisfies a smoothness condition like (1.6), namely

\ViB(z,t,7)| <cp, 7=0,....0, 2 €Qq, forae. (t,7) e T(T), (1.10)

condition (1.9) is obviously fulfilled withB' := B(O'), which is independent of;.
We introduce the following notations for the second ordetigkdifferential operators in-
tervening in problem (1.2)-(1.4): For the instantaneousraors, we denote

{ L(x,t, Vy)u(z,t) = D(=V,) Az, t)D(V,)u(z,t), x€Q, (1.11)

N(z,t, V) u(x,t) = D(n(x)) Az, t)D(V,)u(z,t), x€dQ\{O0'uOn},

whereas the differential operators associated with tlaxation kernel are denoted by

P(x,t,7,V,) = D(-V,)"B(z,t,7)D(V,), x €, 112
Q(x,t,7,V,) = D(n(x))"B(x,t,7)D(V,), r e N\ {Otuo}. (112)

With these notations problem (1.2)-(1.4) can be writterhen¢ondensed form,
{L(t), N(t)} u(t) +/0 {P(t,7),Q 7)tu(r)dr = {f(t),9(t)} (1.13)

on £ x <8Q \ {O'U OH}> , fora.e.t€(0,7T).

without any explicit reference to the dependence on thealbgiz of functionsu, f,¢ and
omitting the differential operato¥ .



1.C Main results and structure of the paper

Relying on the formulation (1.2)-(1.4) of the creep probjeve study the behavior of physical
fields u(z,t) ando(u; x,t) near the crack tips, i.e. as — 0, i = I, II. In particular we give
a precise description of the singularities of the stresd.fiel

The classical result of thisotropic elasticity theory, which serves as a base of fracture
mechanics, leads to singularities of square-root typeatthck tips. It is well known (see
e.g., [39, 4, 40, 24], and others) that the same type of samifjigls occur in the creep theory for
instantaneously isotropicomogeneous materials with tieatropic relaxation kerngli.e.,

A(t) 4 2u(t) A(t) 0
At) = ( A(t) A(t) +2u(t) 0 ) :

0 0 2u(t)
(1.14)
N(t,T)+ 24/ (t, T) N(t,7) 0
B(t,T) = N(t,T) N(t,T) 4+ 24/ (t, 7) 0 ;
0 0 20 (t, )

here\(t) > 0, u(t) > 0 are the Lamé coefficients. In the cited works several difiemathe-
matical approaches are used. However, at the final stagkcigymr implicitly, the main role
is played by theorrespondence principlEf. [38, 35]), which states that

“The stress state of a plane homogeneous and isotropic lmaidgéependent of the Poisson
ratio o = A[2(A + p)]~! in the absence of body forces, in the case of selfequilibdfim
exterior tractions applied on each connected componeritobbundary.”

For problem (1.2)-(1.4) with the matrices defined by (1.148,Poisson ratio can be interpreted
as the composition of Volterra integral operators,

z = A(t)z(t) +/0 N(t,7)z(t,7) dr, 2z p(t)z(¢) +/0 wit,m)z(t,7) dr,  (1.15)

which allows, in principle, to express the singular solntid the creep problem by means of the
singular solutions to the elasticity system. However,adealso to some difficulties connected
with the fact that the operators defined by (1.15) do not cotemWe refer the reader to [40]
for details.

We show in the sequel that for an arbitrary anisotropic agiegeditarily-elastic medium,
the stress singularities might change and degetdmorphicallyon the logarithm of the polar
coordinater;, so that, for any € (0,1/2),

o(uyz,t) = ri_l/QEi(ln Ti, iy t) + O(ris_l/Q) ., x— O, (1.16)

1

As we prove in Theorem 6.4, for any € [—n, n] and a.e.t € [0, 7] the following estimate is
valid

|SH(Inr, ¢, t)] < cexp <d1t + dar/1] 1117‘\) , (1.17)

wherec, d;, d, are positive constants . Thus, the function- X(—z, ¢,t) grows faster than
any polynomialz", N > 0, but slower compared to any exponential functisp(cz),c > 0.



In this way, the power orde;ri‘l/2 of the stress singularity is maintained in the creep theery a
well. However, in opposition to pure elasticity, the protduc
.1/20(u; x,t) (1.18)

L

with fixed ¢ and¢ may have no limit as; — 0. Therefore, the usual definition of the stress
intensity factors, referring to the limit of (1.18) at = 0 with »; — 0, do not make sense
any more, which invalidates certain fracture criteria. hirstcontext, the conditions on the
model which assure the absence of logarithmic packets dnepafrtance, in particular for the
applicability of classical fracture criteria to the creeplgems. We prove that if3* in (1.9)
does not depend on;, then the angular paif! in (1.16) does not contaitnr; at all. At
the same time, we point out certain sufficient conditionsoltguarantee the appearance of
logarithmic packets in (1.16).

The paper is organized as follows. In section 2, the claksiethod for Volterra equations
is applied to obtain the existence of a weak solution to @wob(1.13) defined by (1.2)-(1.4). In
section 3, we prove a basic regularity result in the form oégponential estimate in for the
solutionu(z,t) in some suitable weighted Sobolev spaces with respect tepthial variable
x. These weighted spaces contain the standard singuldrities'/? of the stresses, thus the
displacements described by these spaces aré'nop to the crack tips, in general.

In the next two sections 4 and 5, we prepare the material fopthof (done in section 6)
of a splitting of the time dependent solutiafix, t) into a regular part and a singular part made
of two logarithmic packets. Sections 4 and 5 are devoteddangtantaneougroblems, i.e.,
the problems where the timeis simply a frozen parameter in the Hooke matrx and the
\olterra kernel is absent (or considered as an independghrithrand side through a bootstrap
procedure).

We gather in section 4 classical material related to coregmatotics for elasticity solu-
tions, namely the Mellin transformation and the main siagties. In section 5 we combine
the asymptotics for the instantaneous problem with thedtiagi procedure. This results in new
original estimates on finite logarithmic packets of arbitreength. Relying on the approach
initiated in [8], we also investigate the situation of a #iabd kernel B independent of the an-
gular variable: We prove in this case that we are stayingarsime class of fields with separate
asymptotics without logarithms, along the whole bootspajredure. Finally in section 6, we
come back to the time dependent problem and prove the redidtaly mentioned above. We
end by a discussion of the logarithmic packets in section 7.

2 Existence of solutions and exponential estimates

In this section, we use a standard method for Volterra egustfsee e.g. [19], [15]) to derive
existence and estimates fofimite energysolution to problem (1.13).

We will use everywhere the following generic notation: Fdanach spac# with norm
|- 15, let L (0, T B) denote the space of abstract functions in the intef@al") with values
in the space3, equipped with the norm

|U; T, = esssupl|U(t)], : ¢ € (0,T)}.



2.A  General method for Volterra equations

For the convenience of the reader, we provide the existamtamriqueness result for an abstract
\olterra equation

+ /t B(t, T)u(r)dr = {§(t), forae. t € (0,7T), (2.1)
0

where2((t) : ® — R andB(¢,7) : © — R are families of continuous operators between
the Banach space® and k. We assume moreover that the operati(s) are invertible and
that the inverse operatof(¢)~! and the operator®(¢, ) are measurable and bounded for
t € (0,7) and(t,7) in the triangle7 (T') (1.8), respectively.

Theorem 2.1. For any f € L. (0,T;%R), there exists a unique solutian € L., (0,7;R) of
equation(2.1). Moreover there holds the estimate

s thy < coc® fIf tl, . for ae.te (0,7), (22)
for any ¢y and ¢, such that
co > ess suplA(t) |, and d > esssup||A(t) Bt )|, _ - (2.3)
te(0,T) - (t,T)ET(T) -
Proof. (i) Existence. We search the solution in the form of the series
=> uf(t), (2.4)
k=0

where fork > 0

A(ENE () = G (1) /%m =100 dr
Here we have sat™! = 0 andJ, ;. is the Kronecker symbol. Let us prove the estimate
lu®; ¢l < o))" (t)* I tll » forae.t € (0,7), (2.5)

by induction. Since fork = 0 estimate (2.5) is evident, it suffices to show the estimath wi
k = K > 0 can be deduced from the the estimatesifeat K — 1. To this end, in view of (2.3),
we have

t t
¥t < 6 / [W51 () dr < 6, / k1 7 dr <
0 0

t o LK-1 ((515)K
< et [ gl dr < e Il

Estimate (2.5) implies the convergence of series (2.4) dlsaseestimate (2.2) which follows
by the Taylor formula for the exponential functiom— et .

(i) Uniqueness. Ifu is a solution of the homogeneous equation (2.1) afid = 0 for a.e.
t € (0,t0), then

s tll g < 00t —to)lustll,  VE=to,

and thereforey(t) = 0 for a.e.t € (0,t,) with anyt, < t, + d,*. The proof is completedd
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2.B Energy solutions

We come back to creep problem (1.2)-(1.4). We impose thewiatlg integrability conditions
on the data:

f € Loo(0,T; La())*, g € Lo (0,T; Lo(092)), (2.6)
together with the compatibility conditions (selfequililbom of the loading for a.et)
(f(?t)a U)Q + (g(a t)7v)39 =0 Yve Ra a.e.t e (07T) ) (27)

whereR = {(01 — o, C2 + 1)t ¢4 € R} denotes the linear space of rigid motions. In
(2.7) (-, )= is the scalar product in the spaég(=), the same symbol is used for the scalar
product of vector functions and we denote for simplicity(=)" = L,(=;R") for anyn € N.

To ensure uniqueness of the solution, the following nornadilbn condition is imposed:

(u(-,t),v)q=0 YveR foraete(0,T). (2.8)

Theorem 2.2. Under conditiong2.6)-(2.8), there exists a unique solution
u € Lo (0, T; H'(2))?, (2.9)

to problem(1.2)-(1.4). Moreoveru satisfies the estimate

sl gy < C™ {53 0 + 093 1 | (2.10)
for t € (0,7") and some positive constantsand ¢.
Proof. Letus set

D ={ue H'(Q)” : u satisfies orthogonality conditiof2.8)} .

and letR be the dual space @’ for the extension of thé.? duality. Condition (1.5) together
with the Korn inequality

[ullrr@) < Col| D(Va)ullL,0) YueD,
(see, e.g. [36], [17]), implies that the operat@fg) defined by
A(t)(u) = (v +— D(V)v(z)] " Az, t)D(V,)u(z) d
(1)) = ( /Q[( Jo(@)]" Az, )D(V..)u() dz)

are isomorphisms from® onto R with bounded inverseg((¢) . The operators

B(t,7)(u) = <v — /Q[D(Vx)v(x)]TB(x,t,T)D(Vz)u(x) dx) :
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are well defined fron® into R because, a®(V,)v(z) = 0 for all rigid motionsv € R, — cf.
the structure of matriO(V,) in (1.3):

/[D(Vm)v(x)]TB(x,t, T D(V)u(x) de =0 YueD, veR.
Q
Let the right hand sidg(¢) be defined as

f(t) = <v — /Qv(a:)Tf(x,t) dz + /aQU(x)Tg(x,t) da).

It is clear that conditions (2.6)-(2.7) imply th&tbelongs toL..(0,7;9R). Therefore Theo-
rem 2.1 can be applied: It yields existence and uniquenessalution for problem (1.2)-(1.4),
and estimates (2.10)J

Remark 2.3. For the conclusions of Theorem 2.2, weaker hypotheses andlrix coefficients
A(z,t) and B(z,t, ) than those formulated in (1.6) and (1.7) would be sufficiée only
needs thatd and A~! are uniformly bounded o2 x (0,7") and thatB is uniformly bounded
on Q x 7(T'). In particular, piecewise constast on the half planestz, > 0 is admissible.0

3 Regularity of solutions

We have just seen that a direct application of Theorem 2 dsgive existence of a finite energy
solutionu(z, t) for problem (1.13). The same statement also allows to pregelarity results
for v if the data{ f, g} are more regular and if we know suitable couples of sp&gesi) for
which Theorem 2.1 applies.

But the presence of the crack induces the appearance olaiitigs for the solutions of the
instantaneous problen®§(¢). The first ones of these singularities have the form

Vosz e /riViles),

with a smooth functior; of the angular variable;. Therefore, the spac® should contain
such functions. The use of standard Sobolev spaces is veitative: We could take/7*(£2)

for s < % only. A much more appropriate option consists in choosingited Sobolev spaces
of Kondrat'ev type, [16]. These spaces will also serve tatlsetstronger assumptions on the
data which we will use on the rest of the paper in view of thesgtigation of the leading crack
singularities.

3.A Weighted Sobolev spaces

Let €5°(Q2) be the space of the functions fro@i° (2 U 9Q) vanishing near the crack tipg§*
and being smooth up to the crack surfaces, i.e., jumps/oare allowed. With this notation,
the Kondrat'ev spac&;"(2) is defined for3 € R andm € Ny = {0, 1, ...} as the completion
of the space of smooth functio®° (2) with respect to the norm

m i 12 1/2
ol gy = (D"l ) (3.1)
=0
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wherep = min{1, r1, 71} is the same weight function as in (1.7).

We also need trace spaces for> 1. Note that the boundar§s? is the union of the external
boundaryd), and the two sided/* of the crack. Thus a traceé on 95 is equivalent to the
data of

d]O:d]‘@QO and ¢i:¢‘Mi'

Let us denote the trace operator— w \m by T, the trace operator 06}, by T and the
trace operators o/ * by T

Since 09 is disjoint from the crack, it is obvious thdto(vﬁm(Q)) coincides with the

standard trace spadé™1/2(9¢). On M+ and M, we introduce the spaces;” 172 (M%)
as the closure of$°(M*) for the norm (3.2):

1/2
[ —{an T +f$,ﬁ<w>} with

2 daydyy

|551 - 91‘2 .

o) = [ [ [pten? dtuen, £0) — plun) o=t 40) 32)
—-1J-1

Here 9% denotes the partial derivative of orderin x4, i.e., along the crack. As shown e.g. in

[18] the spacd/m_l/Q(MJf) coincides with the trace spadg (V;(12)), and the same faFy .

Finally we choose to denote Hy;"~'/%(9) the direct sum

Vﬁm_w(@m = H™2(Ty) @ Vﬁm_l/Q(MJr) D Vﬁm_l/z(M_) . (3.3)

Thanks to the density of smooth functions which are zero ercthack tips, we can show that
T'4(V5(Q)) coincides withVﬁm_l/Q(aQ) algebraically and topologically. In other words

Y e Do(VA(Q) <= o€ H™V2(00) and ¢* e V;" 2(M*).  (3.4)

Although the norms (3.1) are well suited for the descriptdthe asymptotic behavior of
the solutions at the crack tips, the operators defined byrtstamtaneous Neumann elasticity
operators (1.11) with domalib(ﬁ“l(Q) are never of index zero, whatever the choice of the
space weight inde, in contrast to the operator with domait' (£2)2.

The reason for this is the presence of non-zero translatipms+ ase, in the asymptotics
of solutions at each crack tip as soon as the right hand sieiis regular than the dual of the
energy spacé’!(Q2)?, together with the following two facts:

(i) If £ — 3 < 0, the weighted s,pacEfﬁfJfl(Q)2 is not contained in the energy spaké ()2,
(i) If ¢ — 3 > 0, non-zero translations, e, + ase, do not belong td/[f“(Q)?

Thus, translations are viewed sisgularitiesof degree0 by the weighted scalUé*l(Q)?
Constants and, more generally, smooth functions in thee€iart variabler, are made ad-
missible by a simple modification of the weighted norms (3ldading to the introduction of
the so-calledstep-weighted spac¢27, 32] which in the case under consideration are closely
connected with weighted Sobolev spaces [21].
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They can be defined as follows: Let € Ny and§ € R, with —1 < 5 < m. For any integer
s,m—F—1<s<m,the spacé/ﬁm“’s(Q) is the completion of£>°(Q) := €5°(Q) +C>(Q)
with respect to the norm

m+1 s 1/2
—(m ; i 2 —mAsvi 2
llyerey = ( D2 0PIV o + D 0TVl ) (B5)
j=s+1 7=0

We note that the conditiom — 3 — 1 < s ensures that any smooth functiane C>*({2) has
a finite norm (3.5). If we choose = m, we obtain the alternative class of weighted spaces
Hp Q) = VﬁmHM(Q) defined as the functions with finite norm

m+41

_ BT 5[
0] 0 = (2 i Vil q)
]:

1/2
9

(3.6)

where the weight is independent of the derivation order. fbHewing result is a consequence
of Hardy’s inequality and is proved in [21] (see also [33])T.h.5.6 and Lemma 6.1.5).

Lemma 3.1.
() Letm € Ny and g € R, with —1 < § < m. We assume that is not an integer. For any
integers with m — 3 — 1 < s < m, the spaceH;'*'(2) coincides with the spacE’ﬁm“”(Q).

(i) Forany 3 > m, the spacef;*'(2) coincides with the spack;"*'(1).

With the particular choice ofi— 5 € (0,1) ands = 0, the spacé/ﬁm“’O(Q) is well defined
(and coincides WithHgLH(Q)). We emphasize that, in comparison with the spage (Q)
that either includes, or excludes the constamtnd the functionn r; simultaneously, the step-
weighted spacé/;"*'*(Q) with m — 3 € (0,1) includes the translation rigid motions, i.e.
constants, and excludes the displacements resulting fremancentrated forces at the tis,
i.e. logarithmic functions.

Let us also note that for a functian Vﬁm“’O(Q) with m € Ny andm — 3 € (0,1) the
following relations are a consequence of a variant of Hardyequality, see [21, Lemma 1.2]:

wz)=a(@) + Y x(@)b, @€V, beR, (3.7)
i=LII

1y gngy + 3 Il < elhollpnogg, (3.8)
s i=1,I1 s

Here x' € C5°(€) is a smooth cut—off function, which is equal to one in a ne@hhood of
the point O, with the propertyy!(z)x™(z) = 0 for x € Q. Thus the supports of the cut—
off functions are disjoint and the functiong (respectivelyy!) vanish in a vicinity of O™
(respectivelyO!). We can choosg'® such thatsupp x* € B' := {z : |z — O] < 1}.

The sum in the left hand side of (3.8) is a norm in the sp@éﬁl’o(ﬁ) equivalent to the
norm (3.5), which means that the spdz;E“”(Q) = Hg”l(Q), with m — 8 € (0,1) can be
considered aswaeighted space with separate asymptotics
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Let us point out that all the weighted spaces we have intrediace independent both alge-
braically and topologically on the specific choice of thedtions p and *.

We end this section by a statement which generalizes (3.8)-&nd is proved in a similar
way, see [21, Lemma 1.3]. We use Cartesian coordinate sgstem (z1 F 1, x5) =: (zi1, Ti2)
with centerO'.

Lemma 3.2. Letm € Ny and § € R, with —1 < 8 < m. We assume that is not an integer.
Let s be the integral part ofn — 3. Then any functiom & Vﬁm“’s(Q) satisfies the following:

(i) There exist unique real numbetg, |a| < s, such that

wiz) =@+ 3 K@) Y b Z—T @evri(Q), (3.9)

i=LII la]<s '

D S D = 7 e (3.10)

i=LII |o|<s

Here, fora = (a1, o), 2 denotes the monomiat’ {3 and a! = a;las!.
(ii) The left hand side f3.10)is a norm in the spacéfﬁm“’s(Q) equivalent to the norr(B3.5).
(i) The constant® are the pointwise traces at the crack p' of the derivatives ofi:

b = 0"“w(0Y), |a|<s, i=1LIL

(iv) The constants;" are all zero if and only ifw belongs toV;"* L(Q).

(v) If, moreover,s < m (i.e., 3 > 0), the spacd/ﬁm+l7s(§2) is continuously imbedded i&°(€2),
with €*(Q2) the space of-times continuously differentiable functions up to thermary of (.

3.B Basic regularity

We will apply Theorem 2.1 again to problem (1.2)-(1.4) in svipair of space®, JR: The op-
erator2(¢) is defined by the differential expressidii(z,t,V.), N(z,t,V,)}, the domain®

is taken as finite codimension subspacéf/é 10(Q)? and the target space as finite codimension
subspace oV (Q2) with

REV(Q) == Vi1 ()% x V2 (00)?. (3.11)

Here/ is the positive integer introduced in (1.6) and (1.7) and ssuane/ — 5 > 0.

The following assertion can be proved either by combinimgdbercive weak formulation of
problem (3.12) (cf. Theorem 2.2) and the Kondrat'ev theoryy calculations the dimensions
of kernel and cokernel for the elasticity operatoD — R (see [3336.1] for details).

Theorem 3.3. Let the timet be fixed. The instantaneous elasticity operator

ur— {L(z,t,V,), N(z,t,V,)}Hu) on Qx (Q\ {0"U0O"}) (3.12)



15

defines an isomorphisgi(t) : © — 2R with

D = {ueV;"(Q)? : u satisfies orthogonality conditiof2.8)} ,

. N - (3.13)
R = {{f,9} € REV(Q) : {f.g} satisfy compability conditio(2.7)}

ifand only if¢ — 5 € (0, 35).

Remark 3.4. By mere application of Lemma 3.2 about the splitting\ljﬁl’o(Q) we find that,
if £— € (0,3) the solutionu, of the instantaneous elasticity operator With g} € R5V ()
has an asymptotic expansion of the form

u(z) = ug(z) + Z X'(x) (arier + agies) (3.14)

i=LII

whereus € Vﬁ“l(Q)2 anday i, as; are real constants. We recall that and e, are the unit
vectors inR?. O

Let us emphasize that the upper boufcd)n the weight is due to the strongeshgulari-
ties at the crack tips, which are associated with éxponent’, as already mentioned. Note
that formula (3.14) will appear as a particular situatioraghore general statement about the
asymptotics of the solution of the instantaneous problem as 0, see (4.23).

Then we can apply the functional framework in Theorem 2.1@woge:

Theorem 3.5.Let! € N := {1,2,...} and§ > —1 such that!/ — 5 € (0,%). Let the right
hand side of the probleifi.2) verify condition(2.7) and the regularity assumption:

{f,9} € Lo (0, T; RSV (9)) . (3.15)

Then there exists a unique solutione L, (0, T; Vé“’o(Q))2 to problem(1.2)(1.4) such that
the orthogonality conditioii2.8)is satisfied. The following estimate holds true,

mu ’ tm V5+1’O(Q) S Coeéotm{Lﬂ g} ’ tm RéV(Q) ) (316)
with positive constants, and ¢, which are independent of, g andt¢ € [0, 7.

Definition (3.5) provides/; **(Q) ¢ HY(Q) for £ — 8 € (0,1). Therefore Theorem 3.5
gives, in a more precise way, the differentiability propesof the energy solution (2.9).

Proof of Theorem 3.5. Theorem 3.3 gives that the operat@¢ét) defined by (3.12) are iso-
morphisms from® onto‘R. Let

B(t,7) ={P(,1,7,Va), Q(-, 1,7,V )}

be the Volterra operator kernel. Let us prove t¥t, 7) defines a family of continuous opera-
tors: © — ‘R.
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The compatibility condition (2.7) was already shown in tiheqs of Theorem 2.2. Therefore
it only remains to prove that there exists> 0 such that for any vector function — u(x) in
© andfora.e(t,7) € T(T)

||{P(7 ta Ta vx)7 Q(a t7 7—7 VI)}uHRéV(Q) S CHUHVBZ+1,O(Q) . (317)

We rely on the splitting (3.14) for the vector functien= (u,us) € V§+170(Q)2. Obviously
there holds

||{P(> i, Vr)? Q(? t, T, VOC)}%I,@HR%V(Q) < C||ﬂﬁ’|v[f+l(g) .

Moreover, thanks to the right factdp(V,) in {P, Q}, the term{P(-,¢,7,V.),Q(-,t, 7, V.)}
iszeroover constants (note that here, it would not be enough tkatlte orders of the operators
because of the possible angular dependency of their ceegffg)i Therefore we have obtained
(3.17). Thus Theorem 2.1 can be applied and yields the sestiftheorem 3.5

In the case of problem (1.13) the series (2.4) for the digpieent fieldu takes the form
u(z,t) = Z uF(z,1), (3.18)
k=0

where v* is the solution to problen{L, N}u* = {f* ¢*} with the orthogonality condition
(2.8) and the right hand siddg™*, g*} given as follows :{ f°, ¢°} = {f, ¢} and fork € N,

{*(x,1), g"(@,0)} = —{D(=V.)"Y¥(x,t), D(n(2))" Y*(x,1)},

t
with V(2. 1) = / Bla,t, 7)D(V., )ik, 7) dr. (3.19)
0
Thus, the intermediate estimates (2.5) in the proof of Téx@o2.1 give for problem (1.13)
1
Bt gy < o (0ot)* 1A 93 11l gy (3.20)

4  Singularities of instantaneous problems with smooth data

For ¢ — 3 € (0, 3) as specified in Theorem 3.5, the elemeantsf the spaceVé“’O(Q)2 have
pointwise traces at the crack tigd! and O, but their associated stress field&u; ») have
not. The square root singularities of the instantaneoubl@nas prevent any further use of
Theorem 3.5 to improve the regularity result on the solutién ¢) of the creep problem. Since
itis important to have a description of the non-continucart pf the stress field, we come back
to the instantaneous problems

{ L(z,t,V,)u(zr) = f(x), x€Q,

(4.1)
N(z,t,Vy)u(z) = g(z), r e N\ {Otu O}

at fixed timet.
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We consider this instantaneous problem (4.1) withe H'(Q) and the right hand side

{f,g9} € RfV(Q) for a weight indexy such that¢ — v > 1. From Theorem 3.3 we know
thatu belong toV[f“(Q)2 for all 3 such that’/ — 3 < 1, but the limit is sharp and does not

belong ton“(Q)2 in general. In this range of weights, the regularity resak to be replaced
with a splitting result into regular and singular parts.

In this section we recall known techniques and results engimat the description of asymp-
totics of u, in order to prepare for the next step, in which we have to thkeVolterra kernel
into account.

We start by the introduction of the Mellin operator penciésaciated with the operators
in (4.1) at the crack tips, and continue by recalling the Meitansformation and its use to
obtain splittings in regular and singular parts of solusioriParticular features of the pencils
corresponding to crack problems for linear elasticity &entaddressed. The splitting results
are finally given first in the case of flat data, then for gensnaboth data.

4.A Mellin operator pencils

The regularity properties (and the singularities) of dohs to problem (4.1) are determined
by two model problems corresponding to each of the two crgsk®* for i = I,II. These
problems are obtained by freezing the coefficients afnd NV at O, defining L} and N**:

Li(t,V,) = D(=V,)TA(Ot)D(V,) 49
N'(t,V,) = D(Fey)"A(Ot) D(V,) . 2

These problems are set on the plane with the semi-infinitkcra
K:={z; eR: r; >0, |¢i| <7}
and are written as :
{ L‘(t, Vo) Ulzi) = Flxi) i €K, 4.3)
N=E V) U(r) = GHai),  ¢i= 7.

The properties of problem (4.3) are related to the resolgétite associatet¥ellin operator
pencil A'[t]. In order to define this symbol, we first write the operator&)# polar coordinates

(r, ) = (ri, 1)
LY(t, V) = r 2Lt 0,0,,70,), N'E(t,V,) =17 'N'E(t,0,,70,), (4.4)
Here the angular variable belongs to the interval
T = (—m, ),

r to the half-axisR ; andd, = 9/d¢, 9, = 9/dr. The Mellin operator pencil'[t] associated
with problem (4.3) is the holomorphic operator valued fimetC > X\ — A'[t]()\), where
A'[t](\) is the operator acting it according to

u — { Lt 0,0, N), NPE(t,0,,\)},

Ai[ﬂ@‘) = { H£+1(T)2 SN REH(T).
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Here RYH(T) is the target space:
RYH(Y) := H7(T)* x R? x R%

We recall that the time € [0, 7] is fixed. Neverthelesg, acts as a parameter and we will keep
in our notations the dependency of the operators.on

4.B Mellin transformation

We fix one crack tipO € {O', O} and omit the index € {I,II} in the notation of co-
ordinates, writingr and ¢ instead ofr; and ¢;. After Kondrat'ev [16], the fundamental
tool for the investigation of problem (4.3) is the Fourieaglace transform with respect to
the variablet = Inr, in other words the Mellin transform, which associates taacfion
R, x (—=m,m) > (r,0) — U(r,0) with compact support in the function defined for alA € C
by

MU, 0) = /0 h rU(r, ) %.

The inverse Mellin transform\/lgl can be expressed as (wighe R)

U(r,0) = 1 /R . r*M[U](N, 0) dA. (4.5)

2T

The Mellin transform can be naturally extended to functibaknging to the weighted spaces
of the classV: In the infinite sectorfK of opening2n we define the weighted spacefg(K)
like in (3.1) with the distance functiop replaced with the true distanceeto the vertexO of

K. The main result for the validity of the Mellin transform is

Lemma4.1. ForanyU € Vﬁ“l(K), the Mellin transformM U] is well defined for any\ with
real part Re A equal to/ — 3 and the inverse Mellin formulét.5) holds foré = ¢ — 3.

We also define correspondingly the weighted trace spb(éég2(aK) , compare with (3.2),
and the product spacg/V (K) for right hand sides, see (3.11). FoF, G*} € R{V(K) such
that (4.9) holds, we have for anywith Re A = ¢ — j3:

ATNMIUIA) = {M[r*F], MIrG*]}. (4.6)

The above relation is the reason for the definitionft].

From the general theory Agranovich-Vishik [1] we know thélt](\) is invertible for all
A outside a discrete sét'. Since the sek' coincides with the set of such that the kernel
of A'[t] is not reduced td0}, X! is called the spectrum ofi[t] and for \ € ! the non-zero

solutions of ,
LNt 0,0, U(p) = 0, peT,
N0, NU(p) = 0, =4,

are the eigenvectors of'[t]. Moreover, the power-law function of degree= C

4.7)

Uz, t) = r'U(p,t), (4.8)
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is a solution to problem (4.3) with zero right hand side:
{ Lit,V,)U(z;) = 0, x€K,

. 4.9
N V) Uls) = 0, gi—dr. *.9)

if and only if A\ belongs toX! and/ is a corresponding eigenvector. Finally;— A'[t](\) ™
is meromorphic on the complex plane with polesih

The fundamental result concerning the solvability of thedeigroblem (4.3) follows, cf.
[16, §1]:

Theorem 4.2. Let Re &} be the set of real partof the elements of*.

(i) Let 3 € R, such that3 ¢ ReX'. Then problem4.3) realizes an isomorphism from
Vﬁ”l(K)2 onto R4V (K). We have the representation formula for its solution:

U— PATO)THOY AN, with H = (M), MrGE])

20T JRer=0—3

and there holds the estimate
1011y < Coll Gl ey (4.10)

(ii) Let furthermorey < (3, such thaty ¢ ReX'. For {F,G*} € RjV(K) N RV (K), let Us
and U, be the solutions of proble(d.3)in Vﬁ‘“(K)2 and V/*!(K)?, respectively. There holds

Us=U, + 2i r AN TPH(A) d. (4.11)

T Je
Here C is a simple closed contour around all elementsifcontained in the strip
{AeC : {—F<Red<l—~}.

The key argument for the above results is the Mellin symhbzdiculus: The solutio/; is
found via the formula

Up = M [ATHO) ™ {ME2F), MrG#]}

and the constan€'; in (4.10) is any upper bound fad'[t](A\)~! in the norm of continuous
operatorsR‘H(Y) — H*"1(T)? equipped with the parameter-dependent norms [1].

Moreover,U{()\) := A'[t](A\)""H()\) is a meromorphic extension of the Mellin transform of
Us tothe strip{A € C : /- 3 < Re\ < ¢ — ~}. Note that the residue in (4.11) is the sum of
the contributionsS{v} of each polev € ¥, with ¢ — 3 < v < ¢ — ~: For ¢ > 0 small enough
(in the case of cracks any < % is suitable)

1 ,
S{v}(z) = — / r* AN (A)TEH(A) d. (4.12)
20 Jix-v)=¢
If v is anon-zero element af, it is a pole of orden and S{v} has the form-“/(y) with an
eigenvectoi/ associated with the eigenvalue

1 Inthe case otracksRe X' coincides with the set of half-integers, $geC.
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4.C Spectrum of the operator pencils, eigenvalue§ and 1

In our particular situation of a crack, we know much more atéiuand the poles ofA*[t](\)~!.
Let us first recall that in [28], see also in [33.4] and [30], it is proved that the spectrum of
the associated operator pencil coincides with

ZU{m+3+iv:meZ} v realindependentofn, (4.13)

in the general situation of the Dirichlet and Neumann protdéor arbitrary selfadjoint systems
which enjoy the polynomial property [29, 31]. The fact that 0 is well known for elasticity
equations in isotropic and orthotropic materials and waabdéished in [11] for homogeneous
anisotropic elasticity. In [9] the equality = 0 is proved for arbitrary Douglis—Nirenberg
systems with the same boundary operators on the two cratcesty = +x. The situation
v # 0 occurs e.g., with a crack inside the interface between tviso#mopic bodies, we refer
the reader to [13, 30, 11] for related examples.

We gather in the following lemmas the facts which we will us@ur analysis.

Lemma 4.3. (i) The spectrunt® contains integers and semi-integers, i¥!,= 3 7.

(ii) All non-zero eigenvalues € %Z are algebraically simple, their geometric multiplicities
are equal to2. The full algebraic multiplicity of the eigenvalue= 0 is 4, its partial algebraic
multiplicities are equal t@.

(i) Eigenfunctions corresponding to positive integarg N are traces onY of vector poly-
nomials of degree\, solutions of problen.9). In particular, for each\ € N there are exactly
two linear independent polynomials.

For the specific problems considered in the paper, we areesttl only in the eigenvalues
A= % and \ = 1, and in the corresponding power solutions (4.8) of probléra)(
The solvability of A'[t](\) when X belongs to its spectrum is related to dual eigenfunctions

corresponding to the eigenvalue\ via the following duality product between functiolsand
U e H(T):

T d .
ZUIU) = [ W) 0.0 Ul)de

* T d i
H2 UG TN (t,é‘@,A))AZ% U(Er) .

Here follow properties concerning the eigenvalue- %

Lemma 4.4. We recall thatY is the interval(—x, 7).
(i) The power solutiongt.8) of problem(4.9) with \ = % have a basis of the forr{lvl,i(x,t),
Voi(,t) } with

‘/i,i('ru t) - Tl/zvl,i(307 t) and ‘/2,i('r7 t) - T1/2V2,i(307 t) (414)

Thanks tq(1.6)we can choos®,; € Lo (0, T'; CW(T))2, n=1,2.
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(ii) The elgenfunctlon@/*) o corresponding to the elgenvalu& of problem(4.7)can be
selected so that the foIIowmg biorthogonality conditisrsatisfied

X (Vni( ) | V(1) = 6ny, mj=1,2, (4.15)

whereJ,, ; is the Kronecker symbol, and as a consequence of the bouesedfl, ; in ¢, one
getsV;; € Lo (0,T;C>(T))".
(iif) The boundary value problem

Li(t,p,0,, %)Z/l(go) =F(p), o€ T; NE(, 0, %)U(iw) = G* (4.16)

with the right hand side§.F, G*} € R*H(Y) admits a solutiorl/ € H**(T)? if and only if
the following compatibility conditions are verified

/v*( d¢+z (ET )G =0, j=1,2. (4.17)

Any solution is determined up to linear combination¥; ; + c2V» ;. However by imposing the
orthogonality conditions

2 UIV5) =0, j=1,2, (4.18)
a unique solution is obtained. Furthermore, the followistjmate holds true
A1l ey < CILF G H ey (4.19)

Proof. The part(ii) is a particular case of general normalization and biortinadjty condi-
tions presented in [23], as it is given in [33, page 65]. In][BOprovided the mechanical
interpretation of the conditions, as well as the methodsetéciion of the base$V, ;, Vs ;},
adapted to different fracture criteria. The p@ifj is the standard Fredholm alternative from the
theory of ordinary differential equation§l

Remark 4.5. For isotropic materials, standard normalization condgior the eigenfunctions
V1. andVs; deal with the associated stresses on the polarfaxis- > 0, ¢ = 0} prolongating
the crack. As shown in [30], these normalization conditions

T (2 = (2mr) Y26, 4
{(D(e2)82) A(O,1)D(Va)Vyi(w1,0) = (27r)~1/20,,1  (normal stress) (4.20)

(D(eg)el)TA(O,t)D(VI)Vmi(.CEl,O) (27r)~1/26,5 (shear stress)

can be satisfied for anisotropic materials as well.

Besides its first assertion which is derived with the helgmijde algebraic calculations, the
next lemma delivers the same facts about eigenvattieas Lemma 4.4 about%.
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Lemma 4.6.
(i) A basis{W(z,t) = rWi (¢, t), Was(z) = rWai(p)} of the power solutiongs.8) of
problem(4.9)with A = 1 is given as follows

Wii(x,t) = x1€1 — Ty Al(L), Wai(x) = x1€90 — 29€1 , (4.21)

where Ai(t) = £, A"(O 1) A/ (O 1) € Lo(0,T)?,

0 2%1/2 A Ap A
. = 7 Al = 21) ’ A" = ( 22 23) :
* (1 0 ) (A31 Azy Ass

i.e., the matrix(A’, A”) is the lower2 x 3—submatrix of the matrixi.
(if) There exist eigenfunctiond’;* and W," associated with the eigenvaluel of problem(4.7)
so that the properties corresponding(ig and (iii) of Lemma4.4hold for A = 1.

Let us point out that the first solution in (4.21) correspotalthe loading along the crack
i.e., (Wi z,t) = (c(t),0,0) . The second solution in (4.21) is a rotation about the p6int
Note that the two other rigid motions, the shifts along thesax andz,, are presentin (3.14)
as detached terms of the asymptotics.

4.D Splitting of solutions for regular data with zero valuesat crack tips

We investigate the solutions provided by Theorem 3.3 when the data are more regular, but
still flat, which means that their traces at the crack tips, if theyteaie zero. The extension to
more realistic regular data is discussed in the next sedtign

Theorem 4.7. Let v be such that
v>-1 and (—~ve€(1,3). (4.22)

Let{f,g} € RfV(Q) satisfying the compatibility conditiof2.7)and u be the energy solution
of the instantaneous problef#.1) satisfying the orthogonality conditiq.8). We know, Theo-
rem 3.3 thatu belongs tovﬁ”l’o(Q)2 forall 8 such that! — 8 € (0, 3), with the asymptotics
(3.14) There holds moreover

u(z) = uy(z) + Z x'(z) Z {amen + by iVii(zi, t) + cniWai(z, t)} (4.23)
i=LII n—1

whereu, € VﬁfJfl(Q)2 and a, i, b,i, c,; are real numbers. We recall tha = (x; — 1, x9)
and zy = (z1 + 1, z5). The displacements

Vn,i(xia t) - 7"11/2Vn,i(80i> t) and Wn,i('ri7 t) =T Wn,i(gpia t)

are those introduced in Lemmds4 (i) and4.6 (i), respectively, for each crack tip.
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Proof. We chooses such that! — 5+ 1 = ¢ — . By Theorem 3.3, we know that has
the expansion (3.14). Since the coefficients of the opesatoand N are smooth, we can
immediately deduce that

{F,Gi} = {L, N }(x'ug) € RIV(K), i=11II,

where ' u; is defined on the entire sectit by extension byo. Then we apply Theorem 4.2
to the data{ F}, G}, which also belong taR;V (K) since they have compact support. The
solution Uz = Ug; coincides withy'us. The regular part i/, = U, ;. The residue formula
for i = I,II, combined with Lemmas 4.4 and 4.6 yields that the asymppatits appear for
v= % and1 and that they have the form in (4.23). Setting

Uy () = Y X(@)Uyi(w)
we end the proof of the theorenl.

Remark 4.8. (i) Since the functionsV,, ; are polynomial, the expansion (4.23) can be refor-
mulated as

2

u(a) = y(x) + Y x'(@)Y bpiVasleit) with @, € VITHH(Q)% (4.24)

i=LII n=1

Here theb, ; are the same constants as in (4.23). Note that witin the range (4.22), for
any displacementv € Vj*“(Q)2 the stresses have pointwise values at the crack®ipf.
Lemma 3.2. In particular, the associated normal stregses: N(x,t,V,)w, on M* have
pointwise valueg/®(0") at the crack tips.

(ii) In principle we can choose and! so that/ — ~ is still larger than prescribed by (4.22).
But the latter limitation suffices to obtain a descriptiortid stresses modulo continuous fields
(i.e. the displacements moduld fields). Moreover taking variable coefficients into accaoignt
easier with (4.22) (hehadowsare present)]

4.E Smooth data for tractions. Values at crack tips

Until now we have considered right hand sides
{f,g} € RIV(Q) with (—~e(1,2) (4.25)

For the volume forcesf, since V. !(Q2) = H!{ '(Q2), we have no other choice thah ¢
Vf‘l(Q)2; moreover, any function, sufficiently smoothéh belongs to this space.
In contrast, for the tractiong we note that the weight”~!*! is unbounded and forces the

elements ofi/*(2) to have pointwise value zero i@ for their gradients. Whereas for the
regular partw., in (4.24), the pointwise valueg®(O') are zero by virtue of assumption (4.25),
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for a general displacement € Vj“vl(Q)?, these values are not zero. However they cannot be
any combination of real values: Since

N(x,t,V,) |, + = D(Fey)  A(x1,0,t)D(V,) (4.26)

s

we obtain the compatibility conditions for the normal sses of a regular displacement:
g (OY) = —¢gT(0Y, i=1I, IL (4.27)

We cannot be satisfied with the assumptigi{©') = 0 because

() Such a property is not acceptable in many physically justiéeamples, in particular in the
case of the uniform pressure from the interior of the cradksfocks).

(i) We have to keep in mind the creep problem where a recursiveegue has to be applied,
see (3.19). Since only one out of the two polynomial dispieeets)V ; is a rigid motion, the
iterative procedure does not conserve zero pointwise sdreghe normal stresses.

Now is it justified to impose the compatibility condition 2#)? The answer may be yes
only if the Volterra kernelB has differentiable coefficients with respecti#o In the case of
sectorial coefficients, condition (4.27) cannot be kephglthe iterative procedure.

In order to provide precise definitions of the spaces for thenblary datay, it is necessary
to examine more carefully spaces of traces. We have alrgddyduced in (3.3) the space
V;‘1/2(a§z). It coincides with the trace space bﬁ(Q), see (3.4). Considering now the space
VAO(Q) = HY(Q) with v and as in (4.22), we find that a relation of type (3.4) is no longer

true. Indeed, on the model of (3.3) we define the spHéé”%&Q) as the direct sum

HEV2(00) = HV2(000) @ HE V2 @ HE V(M) (4.28)

wherer;_l/Q(Mi) IS the space with the norm, cf. (3.2):

-1 1/2
2
HwHHﬁ*l/?(M:{:) = {Z Hp’y&fzﬁHLQ(Mﬂ:) + Il:,tﬂ/(zﬁ)} )
k=0

where the seminormg,iw(zp) are defined in (3.2). Each spaﬂeﬁ_W(Mi) is the trace space
I‘(T(Hf;(ﬂ)) separately, and consists of function$ admitting the representation

V() =9 () + Y K (21,0050 with gF e VT2 (ME). (4.29)

i=LII

In the space (4.28), the elements are independent from each other, and(O') can be
chosen as any constants. On the other hand, formula (3.&$ e same representation (4.29)
for the tracey) € T'y(H(2)) but with the relationship

PHOY) =9~ (0), i=11I, (4.30)

since the constantg are common in (3.7) for both surfaces of the cradk
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Note that (4.30) differs from (4.27) and the change of sign@i27) results from the matrix
D(Fe,) in the Neumann elasticity operator (4.27). To provide theemi relationship between
pointwise values at crack tips of applied external surfaegling, we introduce the trace opera-
tor I'; = 0, for the derivative along the outward normal. For the samgeanf weight indices
~, due to the opposite direction of the normal dff, we obtain

Ve T (HTN Q) <= vy € HV2(T,) and
* € HV(M*) with ¢ (0Y) = —¢~(0Y), i =1, II. (4.31)

The following space for datéf, ¢} is now justified mechanically
REW(Q) = VY Q)2 x Ty (VA1) (4.32)

We point out, that in the right hand side of (4.32) the symbiotan be replaced by since
HH Q) = vf—l(g) and HH () = VHH(Q) for 7,1 satisfying (4.22) (Lemma 3.1). We
use the symbol in (4.32) for the only reason to distinguish the spa‘C@V(Q) from the
maximal space for daturfif, g} defined as

RIH(Q) = HI7Y(Q)? x HV2(0Q) (4.33)
In view of (4.28), space (4.33) is intrinsic for problem (Bmathematically.

4.F Splitting of solutions with general smooth data

The model problem (4.3) with right-hand sides satisfying dompatibility condition (4.31)
admits a smooth particular solution: Explicit calculasagive

Lemma 4.9. Particular solutions of probleni.3) with the right hand side$’ = 0 and G* of
the formG=(z;) = +G with G € R? are given by

W(],i(ﬂ?, t) = —.CEQGi(t) s with G,(t) = €+A”(Oi, t)_lg_ G e RQ N (434)
with £. and A” defined in Lemm4.6.
We immediately deduce from this lemma the following extenf Theorem 4.7

Theorem 4.10. Lety be suchthat —~ € (1,3). Let{f, g} € RV (Q), cf.(4.32) satisfying
the compatibility conditiorf2.7) and letu be the energy solution of the instantaneous problem
(4.1) satisfying the orthogonality conditig2.8). There holds

2
u() = y(x) + Y x'(2)Y baiVialzst) with @, € VIHH(Q)2 (4.35)

i=LII n=1
The full decomposition af can be written as

2

u(x) =y () + Y x'(2) [Z (ani€n + bniVii(zi ) + coiWhilzi, 1)) — szi} (4.36)

i=LII n=1

with @, € VA1(Q)?, real constantsi,, ;, by, c,.i, and G; according to Lemm4.9.
Y Yy ) ) )
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Remark 4.11. If, instead of a right hand side ifif, g} € R)'V(Q), we take a right hand side
{f, g} € RfH(Q) (i.e., without compatibility conditions for tractions atack tips) we find,
instead of (4.35), a splitting of the form

) 2
’LL(.Q?) = ’L’LVJ,Y(.%) + Z X‘(.CE) Z (men,i(xi, t) + dnﬂXn,i(.CEi, t)) (437)

i=ILII n=1

with the regular partv, € Vf“vl(Q)?. HereX,,;, for n = 1,2, are logarithmic singularities, of
the formr; (InrW' (@i, t) + W°(¢i,t)) and (d,.;) _, , are the two components gf (O') +
g~ (0Y. O

5 Power and power-logarithmic solutions of instantaneous blems with
singular data

In this section, we develop new preparatory material in vaéthe proof of our results relating
to the creep problem (1.2)-(1.4). The idea we have in mind iméke use of the represen-
tation of solutions of the creep problem as a series (3.1&rsvithe termsy, of the series
solve {L, N}ur = {fr, gx} With {fx, gx} defined by (3.19). We start the analysis by apply-
ing Theorem 4.10 to the first termyy. Then, we obtain fof f1, ¢} a right hand side which
contains itself a power singularity. This singular righinbaside gives rise, in general, to a
power-logarithmic singularity fof.; , because of e&sonancédetween the data and the inverse
of the Mellin operator pencil at, = %

The investigation okingulardata in that sense is the purpose of this section. Relying on
Kondrat'ev’s theory, reformulated with the help of the Meltransform (se€4.B), we prove
sharp estimates about power-logarithmic singularitiedependently of their degree. This will
lead to our results regarding the general structure of &migies of the creep problem (“loga-
rithmic packets”). Finally, to prepare for the situationsexe logarithmic terms do not propa-
gate (or are absent), we investigate in more detail the angtiducture of singularities, using
the Cayley transform as initiated in [8].

5.A \olterra kernel in polar coordinates

Recall thati = I,1I indicates the crack tig' while &= corresponds to the crack’s surfaces
M= . Freezing coefficients of differential operators assecidb the relaxation kernel,

{P(x,t,T,Vz) = D(-V,)'B(x,t,7)D(V,), 5.1)

Q(x,t,7,V,) = D(n(z))"B(x,t,7)D(V,),

gives the operators with coefficients depending on the angakiablep; € T = (—x, 7),

(5.2)

Pi(@b i, vx) = D(_VI)TBi(Qpb L, T)D(VI) o P € T )
Q' (t,7,V,) = D(Fex)  Bi(£m,t,7)D(V,),
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with B the “limit” of B asz — O in the sense of (1.9). Recall that fd& with smooth
coefficients in the sense of (1.10), the coefficients in (&r2)independent af; .

Similarly to (4.4), we writeP*, Q' in polar coordinatesr, ¢)

{Pi(go,t,r,vm) = r 2Pt T, 0,0,,10,),

. . 53
Q'E(t, 7, V) = rrQE(t,7,0,,10,). (-3)
We fix one crack tip0O € {O, O™} and we therefore omit the indéxc {I,1I}. The time
t € [0,T] is also fixed. Nevertheless,acts as a parameter and we will keep in our notations
the dependency of the operatorston

5.B Logarithmic right hand sides and solutions

Letus fix \y € X, Ay > 0. Let us go back to the iterative procedure used in the proof of
Theorem 2.1: It consists in alternating the solution of astdntaneous problefiL, N*}(t)

with the application of the Volterra kerndlP, Q*}(¢, 7). The Volterra kernel transforms a
singularity of the formr*2/°(y) into a right hand side of the fornr*o—2F0 (), rro=1G0%%}
corresponding to a Mellin transform with a pole of ordein \,. Then the next solution of the
instantaneous problem will correspond to a Mellin transfevith a pole of (generic) ordet,
giving as singular part a termith a logarithmof the formr* (4°(¢) + (Inr) U (¢)).

That is the reason why it is natural to consider right hanésidhich have themselves a
power logarithmic asymptotics. We first give simple formsut@ncerning the Mellin transform
of functions with a power logarithmic expansion.

Lemma5.1. Let )\ € R, ¢ € Ny and let be givev’ ¢ H**(T) for j = 0,...,q. We define
the power logarithmic functiov” as

Viz)=r*)" i(ln YV () (5.4)

=

and the meromorphic functioy as

A : 4 5.5
V( )_ - ()\_)\O)j+1 ( ' )
7=0
(i) We have the Cauchy residue formula for any 0:
1 A
V=— r*V(A) dA. (5.6)

207 Jix-rol=e

(i) Let us denote the characteristic function of the region= {x € K : r < 1} by ©,. Let
£ be such tha? — 5 < \y. Then the functior®,V" belongs to the weighted spab’é“(Kl)
and its norm satisfies the estimate:

) |
i |
19Vl e,y < € 2; Oo =15 3y 1V sy (5.7)
j:
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whereC' > 0 andd > 1 depend only or.

(iii) Let~ be such that — v > \,. Then the functior{1 — ©,)V belongs toV"* (K \ K;)
and its norm satisfies the estimate:

(1= OVl 1, OZ 71 IV ey (58)

(iv) The Mellin transform 0B,V is defined for allRe A < Ay whereas the Mellin transform of
(1 —61)V is defined for allRe A > X\, and both coincide with) in (5.5).

Proof. It relies on simple explicit computations based on the fdemu

! dr
Vx>0 VneN / r*(Inr)" — = (=1)"n! » "L
0

r

Let x € C5°(IR?) be a cut-off function which equals tbfor r < ; and to0 for r > 1. We
are ready for solving the model problem (4.3) with power fitganic right-hand side. We will
provide universal estimates for its solution (i.e. indegnt of its degree).

Proposition 5.2. Let \y # 0 belong toX. Lety and g such that! — 5 < A\ < ¢ —~ and
[0 —B,0—~]NE ={\}. Letqg e Ny and{F’,G'*} € R*H(Y) for j =0,...,q— 1 and set

qg—1
1
H(x): ﬁ (Inr)’ {7“)‘0 2FI pho 1Q]i} x e K.

<.
I
o

(i) The right-hand sideg/ F, G*} = yH belongs toRéV(K) and problem(4.3) at time ¢ has
a unique solutionUs € Vﬁ“l(K)? Similarly problem(4.3) at time ¢ with right hand side

{F,G*} = (1 - x) H has a unique solutioi/, € V."*'(K)?. Moreover there exis€, > 0
and g, > 1 independent of/, ¢ andt € [0, 7] so that

-1

HU’BHVBIZJA(K) + ||U’Y||V’\f+1(K S Z H{‘;CJJ gji}HRZH(T) . (59)

7=0

(ii) There exists unique angular functiobd € H**1(T1)2, j =0,...,q such that

q
1 L
Usg=U,+1) ﬁ(ln YU’ (5.10)
j=0 /"

and we have the following estimates: For any> 2, there exists”; > 0 independent of/, ¢
andt € [0, 7], so that there holds

max &7 || U] <(C; max 5] I{F?, G} (5.11)
0<j<gq 0<j<q

HAL(Y) RCH(Y) -
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Proof. (i) A straightforward modification of Lemma 5(f) and(ii) yields thaty H belongs
to R5V(K) and (1 — x)H to RIV(K) with the estimates

q—

HXHHR%V(K) + H(l - X)H’|R’l;v(K S Z |{f] gji}HR(ZH

7=0

Using the continuity of the inverse of the operator of prablét.3) in the suitable spaces,
compare with Theorem 4.2, we obtain (5.9). The assumptibag 6f uniform ellipticity and
(1.6) of boundedness yield that the constéhtin (5.9) can be chosen independentlyto&
[0,7].

(ii) Let us defineH(\) as the Mellin transform of {r*F, rG*}:
H() = {M[xr*F], M[xrGE]}(\) for Rel < \.
We note that{ Fi,, GE,} := x H — ©, H has its support in the regiofw : I < r < 1},

reg 2
Therefore the Mellin transform

Hieg(N) = {M[r* Freg], MIrGie ]} (V)

is holomorphic in the whole complex plane and easy compartatyield thatH,., satisfies the
following estimates in any dis¢\ € C : |A — \¢| < o} :

q—1

, 1 S
||Hr6g()\)HR2H(T) S OQ Z ﬁ”{fj? g]:t}HRZH(Y) ) (512)

j=0
with a constant’, > 0 depending only ort and o. We deduce from (5.5) that

i i._ (Fi git
TESWIE with  H’ = {F’, G~ }. (5.13)

By (4.11) we obtain the expansion (5.10) together with thedBg formula,

PO zq: _l'(ln r)juj = i T/\A[t](A)_lH()‘) dA. (5.14)

=0 J° 207 Jix—xol=e

Combining with the Cauchy formula (5.6) we obtain

3 (A“ﬁ ~ Al ; (A_Hﬁ + Hieg(0)) (5.15)

j—

modulo holomorphic functions. The Laurent expansiondf|(\)~! at \, takes the form of
the convergent series:

Al +ZR J(A = Ao)™ (5.16)

m>0
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The radius of convergence of this series is the distanceetaltsest pole td,. This distance
being % the radius of convergence %s which means that for alf > 2, we have the estimate
for the termsR,,,,[t] with a constantC' = C' (¢, A[t])

||Rm[t]||R€H(T)—>H‘-]+1(Y) < 05m7 m = _1707“‘7 (517)

Combining (5.15) with (5.16) and identifying the powers(af— )\,), we obtain

W= Y Ral]H" (5.18)
n> l mé 1

with the conventior{ ! := H,ee (o).

Let us choose); > 2 and let us denote biN the boundmax;—g 1 5{ HHJ'HRZH(T). By
definition ' '
||HJHRZH(Y) S(Sl_JNa j:O,,q—l
Thus (5.12) yields fof{ ™! = H,ee(No):
|H~ 1HR[H < C'e™"N < C'6,N
which means that we have finally
||HJ||RZH < C'6;’N, j=-1,0,...,q—1. (5.19)
Therefore estimates (5.17) and (5.19) yield
N ppir iy < > IRl 1 e oy — e ory 1" | ey
n—m=j
< Y coeNg= Y C’C”<6> NG
N n—m=j l n—m=j 61
) 5 1
< "N, — = "N = . 2
< CC'Ng, Z(al) CONGI . (520)

Choosingd € (2,0;) and letting
C,=C6,A[t])C" 6611 —5/6,)7"

we deduce (5.11) from (5.20). The assumptions (1.5) — (Ivé)s that the constants(, A[t])
are bounded in, therefore the constant; in (5.11) can be chosen independently af [0, 77,
onced; > 2 is chosen.O

Remark 5.3. The identity: A[t](\) "' A[¢](\) = Id combined with expansion (5.16), gives by
identifying the coefficients of\ — \y) !
R_1[t] A[t](Xo) =0, i,e.  R_4tJ=0 on RangeA[t](\o)- (5.21)

We note that the augmentation of the logarithmic degree ffbto U in Proposition 5.2 comes
from the only termiR _; [t] H?~!. Thusif H?~! belongs to the range od[t]()\), the logarithmic
degree does not increase.
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It remains to give an estimate of the action of the relaxakemel frozen inO over a
power-logarithmic expression.

Proposition 5.4. Let \; € R, ¢ € Ny and let be giverif’ ¢ H**(Y) for j = 0,...,q. We
define the power logarithmic functiofF, G*} by

q

{P(p.t.7,Va), QF(t, 7, V) } (TAO > %(111 ryu’ (@)
i=0 7
=) %(m P {2 F (T 0), 1 G E (L, T) ). (5.22)
=07

Foranyd > 0, there existg” > 0 independent of/’/, ¢ and (¢, 7) € 7(T'), so that there holds

max &7 || {F7, G}t 7)]|

0<5<q

<C max & ||lu? | (5.23)

RLH(Y) HEHL(T) -
Proof. Let B[t,7](\) := {P(t,7,,0,,\), QF(t,7,0,,\)} be the Mellin symbol of the ex-
pression (5.3) of the frozen relaxation kernel in polar dawates. We have the formula, com-
pare with (5.15)

- {F, 67} (¢, 7)
Blt, T](A)<; g M) Z A Al (5.24)
But, sinceP? and Q* are differential operators ind, of order < 2, we have the expansion
Blt,7](\) = B[t 7] + B'[t, 7](A — Xo) + B2[t, T](A — Xo)?, (5.25)
and, therefore:
{FI,.G75V(t, 1) = B[t, 7| U7 + B'[t, 7| U7~ + B[t, 7] U 2. (5.26)

The uniform bound (1.7) on the relaxation kernel yields dami bound on the operatois®,
k =0,1,2, as continuous operatof$‘*1(Y) — R*H(Y). Hence estimate (5.23) follows!

5.C Absence of logarithms: Cayley representation

In the situation wheréhe limit “stabilized” material laws B'(¢, 7) for i = I, 11, of the relax-
ation kernel are independent of the angular variallewe are going to show that the iterative
procedure (3.18) —(3.19) produces singularities of thefagt™/2) () only, with the exclusion
of any logarithmic term. As usual, we fix a crack iy and omit its mention.

In order prove this “non appearance of logarithms”, for argdinon integer elemeny, of
>, we construct

— aclasssi()\) of functionsU(x) homogeneous of degreg, i.e. of the formr*o/(y),

— aclass$()\) of corresponding right hand sidés(z) = {F, G*}(z),
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with the following three properties:
(i) Foranyt € (0,7, the primal singular functions (4.12) belongtt(\y);

(i) If the frozen Volterra kernel P, Q*} (¢, 7) has constant coefficients ip, then for all
U e MU(No), {P,Q*}t,7)U belongs to$()\g);

(i) ForanyH € $()\o), the solution (5.4) belongs tel( o).

We can see that, as a result, the singularities of the tefims: = 0, 1, ..., generated by
the iterative procedure (3.18) —(3.19) will stay insitl¢)\,), excluding the appearance of any
logarithmic term.

We start with the definition of a clasd()) for each) in the discD(), ;). Let
C:=re?, 1r>0, @€ (-7

be the complex writing of the coordinatesc K centered atD. We have to define an Ansatz
for an admissible homogeneous function of degke@ he prototypes are the functiogs and
¢*, which are sufficient to describe the singularities of thelhae operator. For a wider class
of scalar elliptic operators, they have to be generalizethto+ ¢)* and (( + a()* with o

a complex parameter of modulus 1, and finally, to cover any Agmon-Douglis-Nirenberg
system, to contour integrals im of such functions [8].

We give the following meaning téa¢ + ¢)* and (¢ + a¢)* for |a| < 1 and¢ € K:
: _

_ _ A _ C A
(¢ + O = (’\<1+a?> and (¢ +al) = C’\<1+az> . (5.27)

The functions¢* and(* are well defined orK and as|a| < 1, the functionsl + /¢ /¢ and
1+ «a (/¢ take their values in the half plarige = > 0, thus the products in (5.27) make sense.

For any fixed timef, the homogeneous operatb(t, V), see (4.2), transforms the homo-
geneous functions (5.27) in similar functions with- 2 instead\: There holds

L(t, Vz)(ag +¢)* = A = 1)(ag + ¢)* Ly [t](a),
L(t,V.)(¢ + a0 = XA = 1)(¢ + ad)* 2L_[f](a),
where L. [t](«) are theCayley symbolassociated withl.(¢, V) = L(t, 01, 0):
Lilt)(e) = L(t,a+1,i(a—1)) and L_[f](e) :=L(t, 14 a,i(l —a)). (5.29)

(5.28)

Due to the uniform ellipticity condition (1.5) there exisis< 1 such that for allt € [0, 7] and
for all o € C with |o € [p, 1],
det Ly [t](a) #0.

Let us denote by the space of complex analytic functions®@fin the ring{a € C : |a| €
[0, 1]}. We set

W ={Uiza ew U= [ (a+0 a(a)daf,
lal=e (5.30)
U (N = {U dq_eW U= /|a= (¢C+al)q_(a) da}.
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Note that we can use any cirdle| = R with ¢ < R < 1 in the above contour integrals without
modifying the result.

Lemma 5.5. If A is not an integer, the intersectioft (A\) N £L_(\) is reduced to{0} .

Proof. Let U. € $1.(\). According to the definition (5.27), we can write

Uy(r,p) = /| ) (aC + E)Aqu(oz) da = r*e‘““&/ (1+ ae%“&)Aqu(a) da,

la|=e

U (r.¢) = /| _(Cradq (@) da= e /| (4 ae ™) (o) do.

We see that as functions @f, both U, (r, ¢) andU_(r, ¢) have unique analytic continuations
from [—7, 7] to all of R satisfying

Urtryp+m)=e ™ Ur(r,¢) and U_(r,p+m)=e*"U_(r,¢) forally cR.

Now assume that/, = U_. By analyticity, this holds for allp € R if it holds for ¢ in some
non-trivial interval (in our case fop € [—m, 7]). We find

0=U.(r,o)—U_(r,p) = (e — ™ U,(r,p) forallp e R.
Hence eithet € Z or U, (r, ) =0 forall o € R. O

As a consequence of [8, Th.2.1], the above Ansatz coverslalisns (4.8) of the homoge-
neous system (4.3) without boundary conditions:

Proposition 5.6. Let 23[¢](\) be the space of solutiort4.8) of the homogeneous system
L(t,V,)U(x)=0, zek

Then for allt € (0,7) and non-integer\ € C
2B[t|(N) C UL (A) B U_(N).

Furthermore, both space®3[t](\) N L (A) and 283[¢](A) N L_(\) have dimension.

Since the order of the pol&, of A[t]()\)~! is 1, the primal singularities in\, are linear
combinations of elements B3[t|(\). Therefore our first requireme() is met with

$U(No) == 304 (No) @ S (). (5.31)

As already suggested by formulas (5.28) homogeneous opgfraith constant coefficients
act between spaced(\) with distinct A.

Lemma5.7. Let P(V,) be a2 x 2 matrix of differential operators of order., homogeneous
with constant coefficients. Then there holdg € s{(\ — m) forall U € $A()).



34

Proof. The coefficients ofP(V,) are linear combinations of products of the foﬁ?ﬁ&?
with x; + k2 = m. However

Oc(aC+ O = da(a¢ + )" and 9:(¢ +ag)* = A(¢ +ag)*!
and similarly fordz. The conclusion of the lemma is now obvious.

Let us now define for\ = )\, the space$(\o)
H) = {{F, GEY:F e I\ —2), GE=rY"lg ¢* € C, with ¢ = g—}. (5.32)

Lemma 5.8. Let P(V,) and Q(V.) be 2 x 2 matrices of differential operators homogeneous
of order 2 and 1, respectively. Then there hold®, +Q}U € $H()\g) forall U € $U(\).

According to this lemma, our second requirem@ntis met, since in the constant coefficient
case forall(t,7) € 7(T), Q*(t,7) has the form-Q.
Proof. In view of Lemma 5.7, we only have to prove that/ \@zﬂ = —QU }cp:—ﬂ' Indeed,
QU belongstost(A\g — 1). Let A\; := )y — 1. Let us prove that

YV e d(N), V }m =-V }(p:_ﬂ. (5.33)

In view of the Ansatz (5.30), it suffices to prove (5.33) foraalar functionl” of the form
(a¢ + O™ or (¢ + al)*. We then use (5.27). We have

@1(1 +a£)M = re” M9 (1 4 ae??)™ — reM(14a)™  (5.34)
¢ p=m o=

and (M (1 + a%))\l = retT(1+ a)*l. (5.35)
p=—m

Since\; = m + 1, with an integemn, e***1™ = +i. Whence (5.33) fol/ = (a¢ + (). The
proof for the other case is similafl

We end this subsection with the proof of our third requiren{ai:

Lemma5.9. Let H = {F,G*} belong to$()\). Then there exists a solutidii € $4()\,) of
the model problerd.3). {L(t,V,), N*(t,V,)}U = {F, G*}.

Proof. By assumption there exist,. € 21> such that

F = / (a¢ + ) ?q, (o) da +/ (C+al)*?q_(a)da. (5.36)
loo|=0 loo|=0
Therefore by setting — here we use the Cayley symbols (5.29),
_ 1 ~\ Ao -1
U= ot =) [, (06 + OB l0) g, (o) do 537

1

TR /al:g(< +aQ)L_[t](e) "q_(e) da, (5.38)
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we obtainl, € U()\y) suchthatL(¢,V,)Uy = F. Lemma5.8yields thaf L, N*}U, (whichiis
equal to{ L, = N }U,) belongs ta$()\,) . Considering the new right hand sidé— { L, N*} U,
we are reduced to solve the model problem (4.3) with= 0 and the compatibility condition
Gt = G~ . Let us consider the mappird}()\) defined on the spaceX3 of Proposition 5.6

MW(\) — C2xC?

U — (N*U|_, .. NU| (5.39)

r:l,go:—7r>
As 28()\g) C U()\g), Lemma 5.8 yields that the range 0t()\,) is contained in the two-
dimensional spacé(¢g™,g7) € C* x C? : g* = g~}. The kernel of)t()\) is the space of
singular functions homogeneous of degpee This space is of dimensiok (see Lemma 4.4
for \g = % and [9] for more general framework). Therefore the rang®tdf\,) is the whole
space{(g",g7) € C* x C? : g* = g}, and there exists a solution 3(\,) C LU(\y) to our

last problem.O

As a consequence of Lemma 5.5 and the symbolic calculus oimasnb.8 and 5.9, we
obtain immediately the following result.

Proposition 5.10. Let A\ € X\ Z. The spacedl()\,) and $(\,), defined in(5.30)(5.31)and
(5.32) respectively, equipped with the norms

1Ullypgy = max la.(e)l+ max [q_(a)], (5.40)
KE " 0 = s Tl T+ 1971 (5.41)

are Banach spaces. Moreover, the operators
{P(t,7,V,),Q(t,7,V,)} and {L(t,V,),N*(t,V,)} : () — H(Xo) (5.42)
{L(t,V,), N (t,V)} ' 9(\) — UN)  (5.43)

are bounded linear operators whose norms depend only ondsooiithe coefficients of the dif-
ferential operators, cf(1.6)(1.7)and, concerning{ L(t, V), N*(¢t,V,)} 1, on the ellipticity
constantc, (1.5)of the operatorA.

6 Asymptotics near the crack tips for the creep problem

We come back to the solution(z,t), = € 2, t € (0,T), of the creep problem (1.13). We
make the following assumption on the ddtA(t), g(¢)} :

{f.9} € Lec(0,T; RX'V(Q)), ~ suchthatt —~ € (1,2),
with the compatibility condition (2.7). Herkis the positive integer in (1.6)-(1.7) am{>! H(12)

is the space (4.32), where the tractionsre supposed to satisfy the compatibility conditions
gt (OY + g~ (0OY) = 0 at the crack tips. We will discuss later on the more generse eghen
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{f.g9} € Ls(0,T; REH(2)), where no condition on the tracgs (O') are prescribed. We
assume that the stabilization rate in (1.9) satisfies thguiakty

op >l —v—1/2 (6.1)

where, sincg — v > 1, the lower bound is larger thary2.

From Theorem 3.5, we know that the solutierbelongs toL.. (0, T'; Vﬁ”l(Q))2 for all 3
such that’ — 3 € (0, %). We recall thatu has the representation (3.18) as a sum of tezfns
which solve of the problem§L, N}u* = { f*, g*} subject to the orthogonality condition (2.7).
The right hand side$ f*, g*} are given by{f°, ¢°} = {f, ¢} for k = 0 and (3.19) fork € N.

In this section we are going to derive the following asymiptédrmulae for the members
u” of series (3.18) (th&terate solutions™:

wa,t) = @, )+ Y @) (a0 + Vi) + WD) (6.2)

i=LII

whered” is the “flat regular part” inL (0, T; Vf+1(Q))2, the termsa¥(¢) are constants ifR?
at each fixed time, and the functioh® and W} are, a priori, “logarithmic packets” of degree
kat\g = % and )\, = 1, respectively:

(6.3)

From the mere application of Proposition 5.2, it can be lgadien that the number of terms

in the sums grows witlk — oo, in general, and therefore, the abstract Theorem 2.1 cdm@ot

employed in the framework of weighted spaces with sepa@dgthptotics since these spaces
must inflate from step to step of the iterative procedure.

Nevertheless, in the situation where the limit relaxatienniels B' do not depend on the
angular variables;, the degree of the singular parts is stationar§,ss shown in section 5.C,
which restores the possibility of applying the abstractareen 2.1. Before investigating the
most general situation, we first deal with this case.

6.A Case of a smooth kernel: Absence of logarithms

We make the assumption (1.10) on the relaxation kefhelTherefore we are in the situation
where{P, Q*}(t, ) has constant coefficients in and the constructions of section 5.C apply.
Let v such that/ — v € (1, 2) and such that (6.1) holds.

We setg = v + 1, thus 3 satisfies the condition prescribed in Theorem 3.5. We aneggoi
to use the abstract framework of Theorem 2.1 with the folimaéhoice for the space® and
M: We choose subspaces of the couf R) used before in (3.13) in the form of spaces with
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detached asymptotics, where the asymptotics belong topbeias classeé.l(%) and f)(%)
defined in (5.30)-(5.31) and (5.32), respectively:

D= {u € V;719(Q)? : u satisfies orthogonality condition (2.8) and (6.4)
w=d+ Y @), @ e VIR e ud)},
i=T,II
R = {{f,g} € RéV(Q) . h:={f, g} satisfy compability condition (2.7) and (6.5)
h = ’E + Z X(xi)Hi(.CEi), ’E S Rf’lV(Q), Hi S ﬁ(%)} s
i=LII

with the respective norms, cf. (5.40) and (5.41)

2 2 1/2
lully = (100 + 2o 10l ) (6.6)
i=11I
~ 9 9 1/2
1l = (Plery o+ 2o MHilg ) (6.7)

i=LII

Theorem 6.1. Let the assumptio(iL.10)on the relaxation kerneB be satisfied. Let the right
hand side of probler(iL.13)satisfy for ay such that! — v € (1, g)

{f,9} € L (0, T; RY'V(Y)), ie., withg (0% t) = —gT(O'1) , (6.8)

together with the compatibility conditiq2.7). Let 5 = v + 1.

Then the solution. € L, (0, T;V;°(2)?) of problem(1.13)given by Theorer8.5 admits
the representation

u(z,t) = w(z,t) + Z x'(z) ril/z Vi(ei, t) (6.9)

i=LII

where (recall thatY denotes the interval—=, 7))
W€ Loo(0,T; VITHH(Q)?) and Vi € Lo (0, T5 HHH(T)?) (6.10)
with the estimates

175 s gy + 1V H sy < Coe™ ILF 035t ey - (6.11)

Remark 6.2. In (6.10) and (6.11) the spadé&‘*! (-, 7) has been mentioned only to fix ideas.
Any Sobolev spacé!™ could have been used either since, in the present situsiengular
functions are analytic ofr-7, 7|. O
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Proof. We only have to prove that the assumptions of Theorem 2.latisfied, namely that
the operator{ L(t), N*(¢)} is continuous and invertible fror® into %R, with uniform norms
int e (0,7),and that{ P(t,7), Q*(¢,7)} is continuous fron® into R, with uniform norms
n(t,7)e7(T).

The continuity from® into R relies on (5.42), on the continuity dfZ(t), N*(¢)} and
{P(t,7),Q*(t,7)} from V*11(Q)? into R{'V(£2), and on the continuity of

ur— x(z)({L(t, 2, V), N*(t,2,V,)} — {L(t, O, V,), N*(t, 0", V) })u

from 41(3) into RIV(2), and similar for{ P, Q*}.
The continuity of the inverse relies on (5.43) and on Theofeld. O

6.B Case of a sectorial kernel: Accumulation of logarithmsdr iterate solutions

The estimates given in the following proposition allow foetconvergence proof of the double
series resulting from (3.18) when using (6.2) combined \(6tB).

Proposition 6.3. We assume that the operatdfisl1)and(1.12)satisfy condition§1.6), (1.9)
and(6.1). Let the right hand side of proble(d.13) satisfy for ay such that! — v € (1, %)
assumptior{6.8) together with the compatibility conditiq.7). Let «* be the iterate solutions
of instantaneous elasticity problend, N1u* = {f*, ¢*} with right-hand side€3.19)under
orthogonality conditior(2.8).

Thenu” can be represented in the foi®.2), with the coefficients given 1§§.3). In addition,
the following estimates hold

k
15 gy + D (ks e+ 3067 IV s th ey + IV 3ty |)
=0

i=LII

co(0o1)
< SO ) ey - (612)

wheredy, ), and ¢, are positive constants, independent of the intéger

Proof. Let us denote byN(¢) the norm
N(t) = 1{£.9} it ey gy

Sinceu” solves the instantaneous elasticity problem (4.1), Thee¥d 0 ensures the represen-
tations (6.2) and (6.3) dt = 0 together with formulae

VP, 1) = bii(t)Vii(p, t) + boi(t)Vailp, 1) |
(6.13)
WP (1) = cLiOW (e, t) + coi(EOWailp, t) — 22Gi(t) |
and the estimate

155 #lly s ) + M s tll 4+ Wi ]+ Newss tll + 0G5 2l < ON(E) (6.14)
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where G; is determined according to Lemma 4.9 witl(t) = g™ (O',t) (cf. (6.8)). Direct
evaluation of norms of elements in (6.13) in the spafe!(Y) shows that estimate (6.14)
yields estimate (6.12) fof = k£ = 0.

The proof is achieved by induction, thus we assume that,(§623) and (6.12) hold for
k < K and we verify the same formulae fér= K > 1.

First of all, we observe, that owing to (4.22), assumptiaB)provides inclusion (3.15) for
any 3 € (¢ — 1,1) while, in view of (6.1), we can choose the weight indésuch that

B—0g<vy and B-1<~. (6.15)

Inequalities (6.15) allow to reduce the problem fdf in 2 to model problem (4.3). To this
end, equations (4.1) far® with the right-hand side (3.19) are multiplied by the cutfohction
x! which leads to the problem

Li(t, Vo)X (2)u” (2, 1) = (@) Ff (2, t) + F¥(z,t), 2 €K
‘ . . _ (6.16)
N Vo)X (@) u” (2, 1) = X (2)*GF (2, t) + GE H(a,t), o=+,
where

{FiK(x> t)’ GiK:t(x> t)} =

_ /Ot {P‘(x,t, V), Qi (a, L, 7, vx)} (ViK_l(x, )+ WE r)) dr, (6.17)

and
{FGE ) = (LN} X — (H{L - LN = N (6.18)
1t 1
=[P @iad = [ P (Y e
I 1

_ Xi/t[{p —PLQ - Q) (viK—1 i WiK_l) 4 Xi/t{R S
: 0

I I
The termIi includes the commutatdf L}, N'=}, '] which vanishes near the tip}, hence

I3 ¢l (6.19)

)< el

RLV (K ()

with any » € R, in particular forsc = . The presence of the right factd?(V,) in (5.1)
implies that the point' is outside of the support aft, so the induction insures that

CQ]_

t
i. K-1 K
1753l gy < € / () dr < 22 (6) N (6.20)
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Next, an application of estimate (6.12) for the remaindeérleads to

3l < € / 7 7l ern gy dr <

| . 1
< ces /O Ty ) NG dr < g ()N() . (6.21)

—1)!
Furthermore, by (6.15) and the following inequality
VI (A, 1) = A0 1)] < cyr?” < Clyr{ ™ (6.22)

we find that, by virtue of (4.4), (5.3) and (3.20),

13t ey < ellriVou™ 2]

<
VE(QNsuppx') —

o < A oy < 5 ()N . (6:29)

By an application of Lemma 5.1, in view of estimate (6.12)hwit = K — 1, to the angular
parts VX1 and WX 1! it follows that

R‘ZV

< cflu” ;¢ v

|HVK_1 ; t”| V@+1 _'_ ‘”WK_l ; tm V5+1(K1) S

K—

K— 1 o
=8 Z_; (T)J—HNV 5 thHl(T +W‘HW L. t|HHZ+1
K-1 i
2 5 ]d]
< 137N rt 1— . .
=y Nw{; (ﬁ—l+%)j+1} o

For o; > 0 sufficiently large, the sum in curly brackets in (6.24) is bded by the constant

C=(@-1+)(1-dn@-1+5)")

since(3 —1+1) > (68— 1+ 3) > 0 by the restriction required in Theorem 3.3. The derived
estimate serves for processing the teffhand I} in the same way as witlii and 7. :

t
I gy < (I gy + IWE il )dT
0 8
<cC— (52) N(t), (6.25)
forall »c € R, and

t
[ 4 —1.
L P B (s I T e I

t
<c / (IHKK_l;TH\VéH(Kl)+\|\Wix_1;7\|\ve+l )dT
0

<006—2ﬁ(52t) N(t). (6.26)
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Stabilization condition (1.9) and the first inequality inX6) are applied in (6.26).
It is supposed thaf, > 9y, whered, denotes the constant in Theorem 3.5. Thus, the norms
indicated in (6.19), (6.23), (6.20), (6.25), (6.26), (6§.2fe bounded by the common majorant

0(510 512) L0 N(D) (6.27)

Using representations (6.17), (6.3), estimates (6.12) wi= K — 1 and Proposition 5.4,
we conclude that

(FE (0, GE (5,0} = = 3 ~(ln )

t
/ ({r‘3/2.7:in(<pi, r),r—l/Qg{”i(r)} + {r‘lHin(goi, T), TOICini(T)}) dr,
0
with the estimates

Kj 1-Kj+ 3(527') B
IR KT Tl gy < €O K =1

Thus, by an application of Proposition 5.2 for three valugs= 0, \y = % and )\, = 1, and
Theorem 4.2, the following decomposition of the solutiomtodel problem (6.16) is obtained

V@) (2, 1) = al (1) + Vi (1) + W () + T (a,1) (6.29)

where V. and W{* take the form (6.3) and, moreover,

A6yl N(r).  (6.28)

REH(Y)

K

~K . j Kj. Kj.

T 0y ey + 0 60+ D28 (I 5ty + IV 5ty ) <
j=0

{%ﬁ((&t) +/Ot (Kil)!(égT)K—ldT} N(1)
<c( 510 511) (Bt N(D)

In order to derive the asymptotic formula faf from (6.29) we proceed as follows. (6.29)
is multiplied by the cut-off function®, and the contributions for = I, IT and the term

1= 08" = () o

are assembled together. The estimate

2 2 c 1
10 = 00 = )ty < Iy gono) < 577 (00t) N

is obtained, taking into account thgt + ! = 1 near the point)*.

Thus, we have proved representation (6.2), (6.3) and ei(6al2) fork = K. Since the
majorant in (6.12) is of the form (6.27) with the constawhich now should be selected in the
appropriate way. It is possible, for the numbeégsand d, > §, chosen in such a way that the
majorant in (6.12) is smaller than (K!)~!(5,t)XN(¢). O
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6.C Case of a sectorial kernel: Theorem on asymptotics wittolgarithmic packets

All preparations for our final result on the asymptotics aiutions of the creep problem are
now complete and we are ready to prove:

Theorem 6.4. Let {f, g} satisfy(6.8), where the smoothness indexnd the weight index
are related by(4.22) Let 5 = v + 1. Then the solutiomn € L..(0, T} V§+17°(Q)2) of the creep
problem(1.13), given by Theorer.5 admits the representation

u(z,t) = u(z,t) + Z X'(z) (Cli(t) + 12 Vi(lnr, g, t) + 1 Wi(Inry, @, t)) ., (6.30)

where
W€ Loo(0,T; VITH(Q)?) a5 € Luo(0,T)2, (6.31)
and (recall thatY denotes the interval—n, )
1 )i J 112
Vi(lnr,,t) = > ﬁ(lnr)]vi (p, 1), V€ Loo(0,T; HHY(T)?)
=0 '1 (6.32)
Willnr, g, t) =) —(nr)Wi(p,t), Wi € Lo(0,T; HH(T)?)
— j!
7=0

with the estimates, for positive constants d, and c,:

5 2l ) + Nais ¢l < 2 | {f, g}l ROV (@) (6.33)

1 (0 g ot .
I sy + IV sy < o5y (§0) U 0b ity (639

Moreover, the logarithmic packe(6.32)verify the estimate

Vi(lnr, - )5 ¢ HIWilr, ) 5t e oy <

(1)

5
< CQeéthosh<21/5—it\lnr|)m{ Fr9¥ith gy - (6:35)

at = Z ai , U= Z u"
k=0 k=0
an application of estimates (6.12) yields inclusions (p&1d estimate (6.33). Owing to (6.3)
we have . .
Vi=Y VP owi=Y wy (6.36)
k=j k=j

Estimates (6.12) combined with the inequalityn! < (m + n)! leads to

v tIHHM <025JZ,{,(52) N(t) <c —<gjt) N(t)Z%(égt)”.

n=0

HEHL(T)

Proof. We set



43

The same evaluation performed W{ results in (6.34). To show (6.35), we need the inequality

: > 1
(2]) T 1-3-..-(2—1) 2-4-..-2j

and then we obtain

o)

)
peiry < c2exp (620) S 2]),( 2] () N1

= ¢ exp (0at) cosh <2 %t\ In r\)N(t) :

1

IVi: il

Jj=0

The terms)V; are estimated in the same way, which ends the prigof.

Remark 6.5. If the data{ f, g} belongtoL.. (0, 7; R:H(Q2)) without fulfilling (6.8), the com-
patibility conditions (4.27) at the crack tip@* are violated. Therefore a logarithmic term
appears in the decomposition (6.2) of the solutidn see (4.37). Each step of the iterative
procedure brings a new terim ;. Thus, finally, the summation over= 0, ..., % in (6.3) for
W} must be replaced by a summation oyer 0, ...,k + 1. However estimate (6.12) is still
valid (possibly, with new constants and d;, ;). Moreover, Theorem 6.4 applies, provided
we perform the replacement

ey cp(14+671) (6.37)

in (6.33)-(6.35). Indeed, in view of the modification of sumiion proposed above for (6.3),

formula (6.36) is now
wzivffﬂ', Wi = i Wi
k=j k=(j—1)+
It can be readily seen that inequality (6.34) remains vatidar the replacement (6.37).

Remark 6.6. The stresses induced by the displacement field (6.30) haasyanptotic repre-
sentation containing logarithmic packets at the expone@tando:

o(u;z,t) =o(x,t) + Z [ i_l/QSi(lnri, i, t) + Ti(Inri, o5, 1) | (6.38)

with & € L(0,T; V/(Q)*) and the estimates

I7: 1) < Coe™ IS, 0}l oy -

: (6.39)
2 2 .
1S5 20 ey + 0T 2l gy <026‘5tcosh<2\/5—15\lm’\)\l\{f,g},tIHRglV(Q)-

Sincel > 2 and{ —~ € (1, 2), the Sobolev embeddings and Lemma 3.2 allow to deduce from
(6.39) pointwise estimates dm for ¢ and onanyring) < r, <r; <, for §; and7;. O
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7 Further remarks on the logarithmic packets

In this section we give sufficient conditions for the presentlogarithmic packets in asymp-
totic expansions of elastic fields near the crack tips. Warass moreover, the following inde-
pendence on time of the Hooke matrixand the relaxation kernd®:

A(z,t) = A(x) and B(z,t,7) = B(x). (7.1)

7.A Sufficient conditions for the presence of logarithms

Let us suppose as before that g} belongs toL.. (0, T; R5'V (Q2)).

As a first insight into the possible appearance of logaritHetsis come back to the starting
steps of the construction of the serig3, «* in (3.18). Expansion (4.35) is valid far’, which
now take the form, since the angular pavtsare constant irt,

w(z) = @)+ > x@)r? Y baalt)Vuiles) with @ € VALL(Q)Z (7.2)

i=LII n=1,2

Therefore, in view of (3.19), the right hand si¢l¢!, '} for u! can be split according to

Pat) = Pt - 3 @i S b)) P05 1) Vasle)

i=LII n=1,2
g'(z.t) = = 3" X @Y bai()QE (0, 3) Vis(Em)
i=LI1 n=1,2

where{f',3'} € L.(0,T; R‘H()), see (4.33), and

= /t bni(7)dr . (7.3)
0

We further consider one of the crack tips and omit the supsce: I, I1.

Sinceu!(z,t) is a solution of the instantaneous elasticity problem (ith right-hand
side{f', ¢'}, according to Lemma 4.dii) the asymptotic decomposition (6.2) of does not
contain logarithms associated with the expon};r(i.e., V!t = 0 in (6.3)) if and only if the
orthogonality condition (4.17) is satisfied with

F=> but)P(p,03) Vale) and G* = D" by( oos 1) Vo (7).

n=1,2 n=1,2

Condition (4.17) will be satisfied for any right hand sifg ¢}, i.e., for any coefficient (7.3) if
and only if
Y VW) =0 for n,j=12,

with

YV V) / Vi) Py, 0, ,%)Vn(go)d<p+Zv;(iw)Tgi(a@,g)vn(iw). (7.4)
+
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We set, as usual,
Volz) =V, (0),  Vi(z) =72V (p). (7.5)

Multiplying (7.4) with ' dr = r~/2r=3/2pdr, integrating inr € (1,2), with the change to
the Cartesian coordinates in the annutus- {z : r € (1,2), |¢| < '}, yields

Wm2) 2 (ViV,) = / V(@) D(~V,)T B(9)D(V,)Va(x) da (7.6)

+ Zi: /1 V¥ (z1,£0) " D(Fes) " B (9) D(V,)Vy (21, £0) day

_ (BiD(VI)Vn, D(vx)vj*)ﬁ — M, .
Here B(y) is the limit (1.9) of the kerneB, cf., (5.2). Note that integrals over the circléB,
and 0B, , which appear when using Green’s formula, cancel each ,c¢ivere their common
integrand is a homogeneous functionrobf order —1.

Let 91 be the2 x 2 matrix with coefficientsn,,;.

Strain columnsD(V,)V,, for n = 1,2 are linearly independent i&. So areD(V,)V;* for
j = 1,2. Therefore, one can find a matrix'(,) such thatht is non-singulat. In such a case
the conditions defined by (7.4) are not satisfied in general the termu! gets logarithms in
its asymptotic form (6.2). In addition, from the theory ofiglat functions (cf. [23], [28]) it
follows that the stress intensity factobg(t) in (6.13) can attain any value by the appropriate
selection of the load |y, .

In the following assertion we prove that the same conditien®t # 0 producesnfinite
logarithmic packets (or no singularity at all) in the asyotjmt decomposition (6.30) of elastic

fields in viscoelastic anisotropic bodies with special mgtical inhomogeneity of their relax-
ation kernel.

Theorem 7.1. Let the matricesA and B be independent of time variableésr, and the ma-
trix 2t with entries(7.6) be non-singular. If the functiotnr — V(Inr, ¢, t) in (6.32)is a
polynomial and the corresponding sum is finite, tA&in r, p,¢) = 0.

Proof. We suppose that

k

V(nr ¢, t) = Z %(lnr)jVj(w, t), (7.7)

j=0 "

and the coefficient” # 0. We put the corresponding asymptotic expansion (6.30)drablem
(1.2). Using formulas (4.4) and (5.3), and assembling togrethe coefficients of the expression

2 The results ir§5.C imply that9)t = 0 for any matrix B* independent ofp. A non-trivial dependence ip
is necessary to obtain that is non-singular.
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r~3/2L(Inr)* in the interior equation and of the term'/2;(In )" in the boundary condition
of (1. 2) the following identity is derived

(0,05, YV 1) = / Plp, 0 WV (i, r)dr, p e T, (7.8)
./\/(0@, 2)Vk(j:?r t) = —/ Qi(&p,%)vk(iﬂj) dr . (7.9)
0

We here used the formulad,r/2(Inr)? = r'/2(Inr)? {1 + j(Inr)~'} which shows that we do
not need to pay attention to the differentiation of logari# so that the terms of lower order in
(7.7) can be neglected.

From compatibility conditions (4.17) for problem (4.16jatlows that for a.et € (0,7

/Ot {/_7r V;(@TP(@,a@, %)Vk(w, )de + ZV E= ) ( %) VE(%, T)} dr =0

for j = 1,2, thus
/ Vi (9) P, 0, V(@ t) dp + > V) (dm) T QF (9, 5) V(1) =0 (7.10)
+

forj=1,2andallt € (0,7).
Let us prove now that the linear mapping of problem (4.16nissamorphism from

{v e H"(T)? : V verifies the orthogonality conditions (7.30)
onto the linear subspace
{(F.G*) € R'H(Y) : (F,G") verifies the compability conditions (4.17)

Indeed, the mapping is an epimorphism in view of Lemma 4.4s # monomorphism since,
owing to definitions (7.4), (7.6) and the assumptidni 91 # 0, any element of the kernel
biV1(p) + b Vs () subject to the orthogonality condition (7.10) is zero.

Therefore, problem (7.8)-(7.9) leads to an homogeneougNal equation of second kind
on T, which admits only the trivial solution. Thug* = 0 and we have a contradiction which
completes the proof of theoren.

7.B Aninterface crack

In this section, we are going to construct explicitly a silagity containing an infinite logarith-
mic packet for the case when the relaxation kerBép) takes two distinct values in the lower
half-planey € (—=,0) and the upper half-plane € (0, ), corresponding to two different
isotropic materialsStricto senspthis case does not satisfy the assumptions adopted in the pa
per, since it is supposed in (1.9) that— B(y) is smooth. Nevertheless all our results can be
extended to the new framework of a piecewise constant ritaxkernel, see Remark 2.3.

As a fundamental ingredient, we use a formula giving the imey shiftiv in the spectrum
(4.13) for an interface crack.
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Lemma 7.2. Let O be the tip of the interface crack(x1,0) : z; < 0} between two isotropic
materials with Laré constantg A, i;) and (g, u2). Each material fills a half-space;; < 0
and z, > 0, respectively. The spectrum of the Mellin operator pensgaxiated with this
transmission problem at the poid? has the forn{4.13)with

L, 1 N ()\1 1 Aapn + p2) + 3paps +M§)
2T Ao + Lo )\1(/“ + ,LLQ) + 3o + ,u% .

Proof. Formula (7.11) is deduced from explicit calculations madfLi, §3.3] (we refer also
to [13] for this type of formulae) : We find in (3.2T)c. cit. that

(7.11)

_ =%
v=—In———.
2T 5+ Y6

Going backward in the paper, we find formulas fgrand s as functions ofu;, o and the
Poisson ratiow;, o,. And we arrive at
1 (3 —40o2) + po

V=—In

. 7.12
2T M1+M2(3—40'1) ( )

Replacingo;. by its expression with respect £, and i

Ak
Ok = s~ . >
g 2(A\g + fik)

we find (7.11).0

Remark 7.3. From formula (7.12) we easily deduce that= 0, i.e., y1(3 — 409) + o =
w1 + po(3 — 4o0q) if and only if theDundurs relationis satisfied

1-9
Hr_ o1 (7.13)

pe  1—20y"
See also [11, (3.25)]0

Let us consider the situation where:
— The Hooke matrixA is that of an isotropic material of Lamé constatis),

— The relaxation kernelp — B(y) (still independent of time) is defined fap < 0 (i.e.,
xo < 0) by the matrix B_ of Lamé constant$\_, ) and fore > 0 (i.e., zo > 0) by
the matrix B, of Lamé constanté, , i, ).

A and B4 are of the form (1.14) with\, x and A4, i, respectively.

We are going to construct an infinite logarithmic packet fog treep problem associated
with A and B = By by a comparison with the singularities of the interface peobof purely
elastic material lawA + B wherec is a small parameter.
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Lemma 7.4. Letiv(e) be the imaginary shift of the spectrum associated with ¢ B... Then

vie) = % Ink(e), (7.14)
wheree — k(e) is analytic in a neighborhood af. The Taylor expansion of at 0 starts with
k(e) =14 ek + O(?), e—0, (7.15)

with I
K1 = D00+ 20 (At +py — Ao — o). (7.16)

Proof. We use formula (7.11) with
M=A+eEA, p=pteu-, A=A+eA, p2=p+eEp,.

We find for x(e) a rational fraction with numerator and denominator of deg¥en « and
tending tol ase — 0. Computingx, Yyields (7.16).0

We assume that
Ay s #F A+, (7.17)
which ensures that(c) # 0 for 0 < € < gy with g > 0. Then the “first” singularities of the
interface crackA + B, have the form of
Vierz) = r2tv@ V(e ) = rze”©OMr Yz ) |

and their complex conjugates. It is possible to choeser V(g; ¢) so that the dependence
is analytic andV(0; ¢) # 0. Composings-expansions ofs (7.14)-(7.15) andV with series
expansion of the exponential function we find that

= V) with VA = (20 00 4 3 uep V().

(7.18)
Since(A + eB1)V(e;z) = 0, we find that the term&* of the series (7.18) satisfy
{L,N®WW* = {P,Q*}V*' VEeN. (7.19)
We come back to the creep problem by the foIIowing trick: We se
uF(z,t) = H v’f( ). (7.20)
Thanks to (7.19), we check that the seriéssolves the instantaneous problefis N*}u* =
{f*, g"} with {f*, g*} given by (3.19). Therefore the associated series (318)* := u(z, t)

solves the homogeneous creep problem in an infinite cractethich. Combining (7.18) with
(7.20) gives finally

> tk ilil k 1 (1 b 1 j kj
u(z,t) = ;H[(%) T2 Z 2(Inr)? V¥ (o).
—0

j=0

Consideringx'(z)u(zx;, t) produces a solution of the creep problem with smooth andifjat r
hand side, containing an infinite logarithmic packet.
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Remark 7.5. a) By extension, the proof of the last formula shows thatiibkyanic packets also
appear when the set (4.13) does not coincide vgmi i.e., the exponents of power solutions
have non-trivial imaginary parts(¢).

b) Since logarithmic packets are present for aging mateifidhe Dundurs relation (7.13)
is violated, these packets can appear at a crack on theaogeof an isotropic aging material
provided that the lower and upper parts of the material oh biokes of the crack are of different
age. [
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