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Abstract. We investigate time harmonic Maxwell equations in heterogeneous media,
where the permeability u and the permittivity ¢ are piecewise constant. The associated
boundary value problem can be interpreted as a transmission problem. In a very natural way
the interfaces can have edges and corners. We give a detailed description of the edge and
corner singularities of the electromagnetic fields.

Introduction

Physical objects interacting with electromagnetic waves not only tend to have corners and
edges, but are frequently composed of several materials with different electric and magnetic prop-
erties. The electromagnetic fields then have singularities not only at the exterior corners and edges,
but also at the singular points of the interfaces between the different materials.

We show how these singularities can be analyzed using the classical KONDRAT’EV method
[13]. In the paper [8], we studied the singularities at corners and edges of a homogeneous material.
Here we continue this investigation of the singularities of solutions of the time-harmonic Maxwell
equations by studying the case of piecewise constant coefficients e (electric permittivity) and pu
(magnetic permeability). For the case of two materials separated by a plane, see also A. BONNET-
BeENDHIA, C. HAZARD, S. LOHRENCEL [5].

We try to describe as explicitly as possible the principal parts of all singular functions of the
electric and magnetic fields. We show that all the singular functions can be obtained from those of
associated transmission problems for the scalar Laplace operator. Thus one can benefit from the
many results that are available on this subject, see [10, 16, 15, 19].

In the case of a homogeneous body [8], the singular functions are generated by those of the
Dirichlet and Neumann boundary value problems for the Laplacian. In our heterogeneous case, we
also have to consider two problems for the Laplacian. They correspond to the equations for the
electrostatic and the magnetostatic potentials. The electrostatic problem is an interface problem
for the Laplace operator with exterior Dirichlet boundary conditions and jumps of the normal
derivatives at the interfaces determined by the discontinuities of the coefficient e (operator AD¥
see (1.7) and Notation 3.3). For the magnetostatic problem, we have to consider the operator
A" (see (1.8) and Notation 3.3) with Neumann boundary conditions and jumps determined by
the discontinuities of the coefficient 1 .

As in the homogeneous case [8], we find three types of singularities (type 1, 2 and 3). There
may be strong singularities that are not even in H'. We show that these are of type 1, i.e.
gradients of singular functions of the corresponding static problems.

For the singular functions of type 2, there is a difference to the homogeneous case: In [8], we
obtained an explicit formula (a differential operator, see [8, Lemma 7.5]) that gives the Maxwell
singularity in terms of the singularity of the opposite static potential problem. In our heterogeneous



case, the exponent of the singularity is still equal to an exponent of the opposite static potential
problem. For the angular part of the singular function, however, we find an additional term, see
(5.3), that involves the solution of an inhomogeneous scalar interface problem. Thus the type 2
singularities of the electric fields have the same exponents as the magnetostatic potentials, but their
angular parts contain a term corresponding to an electrostatic field generated by interface charges
depending on the jumps [eu] of the index of refraction.

Another important difference to the homogeneous case is that the regularity for the interface
problems can be much lower, even with regular data. Thus, in the homogeneous case, one has
at least H'/? regularity for Lipschitz domains [6] and H' regularity for convex domains [20].
Here, we find only 0 as a limit for the regularity. Thus for any s > 0 there are examples where
the solution is not in H*. If there are only two materials the lower limit of regularity is 1 for

1
arbitrary polyhedra and % for convex domains.

For the two-dimensional case (which governs also the edge singularities in dimension 3 ), one
has simple formulas in the homogeneous case: They show that the strongest singularity is of type
s

1 and that the lower limit of regularity is = if w € (0,27) is the largest opening angle. This
holds for both the electric and the magnetic field.

In the heterogeneous case, due to the different behaviors of the coefficients ¢ and pu, the
electric and magnetic fields will have, in general, different regularities. As usual their regularity is
limited by the leading singularity. If this leading singularity is of type 1, the regularity is s — 1,
with s the regularity of the corresponding static problem. If not, the leading singularity is of
type 2, and the regularity is the same as the regularity of the opposite static problem. In the two-
dimensional homogeneous case, the second possibility never happens, while in the heterogeneous
case, there are cases where the leading singularity is not of type 1, but of type 2.

Let us give an example. In a typical case of several dielectric materials (three are sufficient)
with strongly varying e, but constant p, in a convex polygon with largest opening w, one has
H?t7 regularity for the magnetostatic potential, with v > 0 any number < Z —1. For the
electrostatic potential one may have only H't? regularity with any § > 0. Thus the type 1
singularity for the magnetic field has regularity H'*7 | compared to the H't? regularity for the
type 2 singularity. It is easy to have 0 <~ (take three adjacent sectors of opening 7 and e equal
to 1 in the exterior sectors and to 100 in the middle sector: then v = 0.3333 and 6 = 0.1793).
In such a situation, the electric field has only H? regularity (type 1) while the magnetic field has
H't9 regularity. Such a difference of 1 between these two regularities is the maximum possible.
(See also Remark 8.2 for an example where v = +oo and § is close to 0.)

In section 1, we recall the regularized variational formulation of Maxwell’s equations for het-
erogeneous materials. We define the two associated scalar potential operators AP¥ and Ageu .

In section 2, we characterize the closure of the subspace of smooth functions in the natural
variational spaces associated with the electric and magnetic fields.

In section 3, we give two different decompositions of the variational spaces. In the first case,
the regular part is in H' on the whole domain, thus has no jumps across the interfaces, whereas
in the second case, the regular part has jumps in the components normal to the interfaces. In both
cases, the singular parts are gradients.

In section 4, we state the necessary results on scalar interface problems for the Laplacian. In
section 5, the three types of Maxwell corner singularities and in section 6, the edge singularities
are studied.

Section 7 gives some conclusions about H? regularity in general and in several particular
cases. We give in section 8 proofs for the results about minimal edge regularity for the Laplace
interface problems on which the Maxwell regularity results are based.



We shall use the following geometric and analytic setting: We assume that 2 is a Lipschitz
polyhedron, which means that {2 is a bounded Lipschitz domain with piecewise plane boundary.
We also assume that ¢ and p are piecewise constant > 0 on 2, determining a partition & of
Q in a finite set of Lipschitz polyhedra €q,...,{0;: oneach Q;, ¢ =¢; and p = p; with ¢
and fp; positive constants. We denote by Fj; the (open) faces of Q;. Let Zin, be the set of
the interior faces (contained in Q) and Fex the set of the exterior faces (contained in 99 ).

In general, we will denote by bold letters the functional spaces for the fields. Thus H?*(Q)
denotes the usual Sobolev space on € and H*(Q) denotes H?*(2)?>. We also need for s >
piecewise H* functions relative to the partition &

1
2

PHY(Q,2)={pec L*(Q)| ¢; € H(Q;), j=1,...,J}.
Here, of course, ¢; denotes the restriction of ¢ to ;. For the fields we set
PH*®(Q, 2) = PH*(Q, 2)3.

We will also denote by PH?(%#,) the product of the spaces HY?(F) for F € Z, and
similarly for %. . Finally, as usual for Maxwell equations, we need spaces of fields with square

integrable curls:
H(curl;Q) = {u € L*(Q)®| curlu € L*(Q)*}, (0.1)

and with square integrable divergences (here £ =€ or p)
H(div;&;Q) = {uc L?*(Q)®| div(¢u) € L*(Q)}. (0.2)

Asusual, if £€=1, H(div;&;Q) is denoted H(div;Q) for short.

1 Maxwell formulations

Classical time harmonic Maxwell equations are given by
curl E —iwpH =0 and curlH +iweE=J in Q. (1.1)

Here FE is the electric part and H the magnetic part of the electromagnetic field. The right hand
side J is the current density. The exterior boundary conditions on 92 are those of the perfect
conductor (71 denotes the unit outer normal on 99 ):

Exn=0 and H-n=0 on Q. (1.2)

The natural variational spaces are Xn(€,e) for the electric field and X7 (€, ) for the
magnetic field according to

Xn(Q,e)={ue H(curl; Q)N H(div;e;Q)| uxn=0 on 9N}

and
Xr(Qu)={ue H(curl; Q)N H(div;u;Q2)| u-mn=0 on 0Q}.

Any field u belonging to one of these spaces is in H(curl; ;) N H(div;Q;) for each j and
satisfies additional jump conditions at the interior interfaces F € .Fy :

Xn(Q¢) = {u € L2(Q)% | curlu; € L2()%, divu; € L2(Q;),
[uxnlp=0, [cu-nlp=0, VFecFy (1.3)

’LLXTL|F:0, vF’e<g\ext}



and
X (1) = {u € L2(Q)% | curlu; € L2(,)%, divu; € L2(Q;),

[uxnlp=0, [pu-nlp =0, VF & Fy (1.4)
U"I’l|F=O, VFeyext}

where the jump [v x n],. isequal to (v; x n; —vj x n;)|p if F belongs to 9§, and to 98,
with v; the restriction of v to Q; and with m; the exterior unit normal to 0€; .

We can formulate elliptic variational problems either for E or H . We introduce the following
two formulations:

’U,GXN(Q,E), V'UEXN(Q,FJ),
(1.5)

/ulcurlu~cur1v+diveu divev —w?eu-v = (f,v),
Q

where (f,v) =iw(J,v)+ i<div.],divev> , and

u € XT(Q,,LL), Yv € XT(Q,,LL),

(1.6)
/ et curlu - curlv + div pu div pv — w? pu - v = (h,v),
Q

where (h,v) = <5_1J,curl v). If (E,H) solves the Maxwell equations (1.1)-(1.2), then E is
solution of (1.5) and H of (1.6). The converse also holds, see [8], if w? does not belong to the
spectrum of the operators —ADP and fAEIeu naturally associated with equations (1.1):

e —AD s defined from ﬁl(Q) into its dual H~'(Q2) by

Ve, U e H'(Q), —(AP"®,0) = /ggradq) grad ¥ ; (1.7)
Q

o —AN" is defined from H'(Q) into its dual by
VO, W e H'(Q), —(AF"®, V) /ugrad@ grad ¥ . (1.8)
Q

We end this section by a regularity result for the divergence, see also [8].

Theorem 1.1 If u solves (1.5) with f in L?(Q)3, then diveu belongs to I%I(Q) . If u solves
(1.6) with h in L?*(Q)%, then divuwu belongs to H(Q) .

PRrROOF. Let wu be solution of (1.5). Taking as test functions v = grad ® with ® in the domain
D(ADT) of AP we obtain

V® € D(APT), <div5u, APTP w2<I>>Q = <f, grad <I>>Q .

Let g be a solution of the Dirichlet problem (if w? is an eigenvalue of —ADP¥ the above equation
ensures the solvability of this problem)

MRS ;11((2), —<€gradq, grad\I/>Q + <w2q,\I/>Q = <f, grad‘l’>9.



Whence
V@ € D(AD™), (g, AD"®4+uw’®) = (f,grad®) .

Thus diveu —q is orthogonal to the range of AP +w? | therefore is either 0 or an eigenvector of

—AE“ associated with w? . Either way, diveu — ¢ belongs to H!(f2), hence diveu too. The
proof for the “magnetic” problem (1.6) is similar. [ |

2 The closure of piecewise-smooth functions in Xy(Q,¢) and X (Q,u)

It is clear that the bilinear forms associated with problems (1.5) and (1.6) are coercive on
Xn(2,e) and Xr(Q, ) respectively. When e is smooth, it is proved in [7] that Xx(2,¢) N
H'(Q) is a closed subspace of Xn(Q,¢). In our situation, the corresponding spaces are

Hy(Q,¢) := Xn(Q,6) N PHY(Q,2) and Hr(Q,p) = Xr(Q,p) N PHY(Q, 2).
From (1.4) and (1.3), we immediately obtain
Hy(e) = {ue L2(Q)? | u; e HY(Q),
[uxnlp=0, [cu-n|lp=0, VF € Py (2.1)
u X n|p =0, VFEﬁZext}

and
Hr(Qp) = {ue L3(Q)° | u,; € HY(Q)),

[uxn]p=0, [uu-nlp =0, VF € Fy (2.2)

u-n|p:0, VFEyext}
In this section we are going to prove that not only Hy(€2,¢) is closed in X n(£2,¢) , but still

Hy(Q,¢) is the closure in Xy (£2,¢) of piecewise-smooth functions. To this aim, let us introduce
for any s, 1<s < oo, the spaces H3(Q,¢) and HZ(,p):

Hy(Q,¢) .= Xn(Q,e)NPH?(Q, %) and Hp(Q,p) = Xp(Q,p) N PH?(Q, ).

Of course their elements are the piecewise- H* fields satisfying the boundary and transmission
conditions of (2.1) and (2.2).

Our main result in this section is

Theorem 2.1 The closure of HY (R, ¢) in Xn(Q,¢) is Hy(,¢), and the closure of H (K, u)
in Xr(Q,u) is Hp(Q,u) .

The proof follows from a succession of lemmas.

Lemma 2.2 Let Cy = maxj{zs;l,sjpj} and Cpr = maxj{/ijfl,sjuj}. Then for any v €
H?%.(Q,¢) there holds
/s|gradv2 < CJ\;/<u1|curl'v|2 + |divsfv|2>, (2.3)
Q Q
and for any v € H2(Q, p) there holds
/u|g1r'aldv|2 < C’T/(s_1| curlv|* + |div;w|2). (2.4)
Q Q



Note that the left hand sides of (2.3) and (2.4) are the bilinear forms of the operators AP
and Allfeu respectively and that their right hand sides are the Maxwell bilinear forms, ¢f (1.5) and
(1.6).

PRrROOF. For any j and any v € H? (€2;) two successive integrations by parts yield:

/ e; |grad v|? —/ qA’un)—i—/ €j0,v - v
Q; Q; 09,

J J J

= / Ej(|cur1'u\2+|divv|2)
Q.

J

+/ gj(an'u-'v—(curlvxn)-v—divv(v-n))
a0

J

On each face of 02, let us denote by v, the normal component v-n of v and by vt its
tangential component v — v,n . The tangential parts of the gradient and of the divergence are
denoted by grad+ and divt . Using that the faces of {); are plane and relying in particular on
the identity — curlv x n = grad+ v,, — 9,v1 which holds on each face, we arrive at

/Ej|gradv|2 = /sj(|curlv|2+|divv|2)
Q Q;

J J
+/ grad(g;v,) - v1 — divr v7 (5Un).
09,

If v belongs to PH?(2, %) and is such that for any interface F' € iy, [vxn] =0, we deduce
from the above equality that

/Egradv|2 = /€<|curlv|2+|divv|2>
Q Q

+ Z grad(evy,) - v1 — divr vT (evy,)

+ Z gradr[ev,], - v — divr vT [, .
FEFin v F
Thus, if v € H%(Q,¢), fQ(€|gradv|2 is equal to fQ€(|curl'u|2 + |dive|?) and similarly, if
v e H2(Qu), fQ p|grad v|? is equal to fQ p(| curlw|? + |divw|?) . Estimates (2.3) and (2.4)
are now straightforward. [ |

Now we are going to prove density results. For this, we go through several steps.

Lemma 2.3 Let w be a bounded sector of radius 1 in R? and let r be the distance to its vertex.
Let h belong to H'(w). Then r®h tends to h in H'(w) as a —0.

PROOF. By the dominated convergence theorem, we obtain immediately that r*h, r*0d,h and
r®dyh tend to h, O,h and Oyh respectively in L?*(w) as a — 0. It remains to prove that
hd,r® tends to 0 in L?*(w) as a— 0.

The difficulty lying in r = 0, we can assume that h =0 on r = 1. With the help of an integration



by parts, we obtain

1
/ |hOpr®|? rdr =
0

from which we deduce

1 1
/ ah? 8,12 dr = —/ ahd.h 2% dr
0 0

1
= —/ ar® Yh r®9,.h rdr,
0

N |

2

100,15,

<O iy 17 0h] -

Thus, setting
2

X(Oé) = ||h8TTaHLQ(w) 9

we have obtained that X («) is bounded as « — 0. Similarly as above, we have

X(a) —2X(5) = — / ar® 'h (r*0,h — 0,h) dx dy,

w

from which we deduce

[X(0) ~ 2X ()] < VX(@) [0k~ 0,h] -

Thus, |X(a) —2X(5)| tends to 0 as a — 0. As X(a) is bounded, we can deduce from this
what we wanted, i.e. that X (a) — 0. [ |

Lemma 2.4 Let w be as in Lemma 2.3 and let x = x(r) a smooth function in €5°(—1,1) equal
to 1 in a neighborhood of 0. Let h belong to H'(w). Then h belongs to the closure in H*(w)
of the set

S(h) := {rm —x(mr)h | a€(0,1), ne N}. (2.5)

Proor. With Lemma 2.3 we have only to prove that we can choose a and n so that the norm of
r®x(nr)h in H'(w) is as small as we want. Obviously, r*x(nr)h, r*x(nr)d,h and r®x(nr)d,h
tend to 0 in L?*(w) as m — oo uniformly in « € (0,1). From the proof of Lemma 2.3, we have
that ho,r® tends to 0, thus x(nr)hd,r® tends to 0 in L?*(w) as a — 0, uniformly in n. It
remains to evaluate the norm of r*hd,x(nr) in L?(w). We start from the estimate

C >0, Vre(0,1),VneN, |[9.x(nr) < g

-or
Then, as the support of 9,x(nr) is contained in (0, %) , we have

|7 ho,x(nr) 02 2o, ()| ) < O R

||L2(w) < L2 (w
Since, for any a > 0, by Hardy’s inequality, 7—'**/2h belongs to L?*(w), for any fixed «a, we

can choose n so that ||raharx(nr)||L2(w) is as small as we want. |

As a straightforward corollary of the previous lemma, we obtain the corresponding result in
R3:

Lemma 2.5 Let W = w x I where w is a plane sector and I an open interval. Let h belong
to HY(W). Then h belongs to the closure in HY(W) of the set S(h) defined by (2.5) where
ts still the distance to the verter in w .



Lemma 2.6 Let Q; be a polyhedral partition of €1 and let ¥ be the skeleton formed by the union
of the closed edges of all the Q; . Then the subspace of HR (2, €) of the fields which are zero on
3, is dense in Hy(Q,¢) , and similarly for the spaces Hp (2, u) .

PrROOF. Let h € Hy(Q,¢) and & > 0. The proof of the existence of a h € H3(,¢) such

that h =0 on ¥ and |h — hl| pHIO, ) < € is organized in three steps.

STEP 1. Let x be a function like in Lemmas 2.4 and 2.5. For each vertex S € ¥ let pg be the
distance to S . Then x(nps)h tends to 0 in PH(Q, ) for each vertex S as n — oo. Thus
we can choose n large enough so that

hy:=h-— Zx(nps)h is such that |h — hq]|
S

i (o.2) < /4

Then we can apply Lemma 2.5 to h; in the neighborhood of each edge in ¥, and we obtain a
new field ho in Hj(Q,e) such that

hs =0 in a neighborhood ¥ of ¥ and |h — h|| <e/2.

PH(Q, )

STEP 2. Let #; be a neighborhood of ¥ such that ¥ C # . We can then introduce independent
lifting of traces Rp on each face F € FinUFeyxs acting from the subspace of H'/2 (F) of functions
g which are zero on ¥, into PH'(Q, 2), so that Rp(g) is zero in a neighborhood of all the
other faces. With these liftings, we can construct a lifting Ry of the trace and jump operator

YN
IN - PHl(Qv '@) — HFE?eXt H1/2(F)2 X HFE?int Hl/Q(F)S
v — (gT,F =vxnlp, grr=[VXnlp, gur=I[v- n]F),
such that yyRyg = g for all set of traces and jumps which are zero on % . Let Cg be the norm
of RN .
STEP 3. We regularize ho in each ; by convolution by a regularizing sequence X, . For n
large enough, the regularized field hg is zero on ¥; and

||h2 - h3||PH1(Q,33) < 5:/4 and ||’YNh3HpH1/2 < 6/(4OR)

Setting h = hs — Ryynhs yields the desired approximation of h. The proof for the other
boundary conditions is similar. ]

Now, Theorem 2.1 is clearly a consequence of lemmas 2.2 and 2.6.

3 Singularities of the variational spaces

In this section we establish continuous decompositions of the spaces Xy (2,¢e) and X1 (£, )
intoa H' or PH' field and a gradient. Such a decomposition is well known for the homogeneous
Maxwell’s equations, i.e. when & and p are constant or sufficiently regular (e.g. Lipschitz)
[3, 4, 12, 2, 17], and was extended to the heterogeneous case by [5] under the assumption of
two materials with a plane interface. We prove here two sorts of decompositions in our general
framework.

We begin with two lemmas giving the existence of regular vector potentials:

Lemma 3.1 Let us assume that Q is simply connected. Let w be a divergence-free L? field.
Then there exists ¢ € Hp(Q,1) such that curly =u.



This Lemma is simply obtained by the combination of [1, Th.3.12] which yields a potential
Yo in Xr(Q,1) and a decomposition of this 1y in a regular ¥ € Hr(2,1) and a gradient
according to [3]. Of course this gradient part does not contribute to the curl!

Similarly, relying on [1, Th.3.17] and [3], we obtain

Lemma 3.2 Let us assume that Q is simply connected. Let u be a divergence-free L? field such
that w-n is zero on ). Then there exists ¥ € Hyn(,1) such that curlyp = u .

We also introduce the following notation:
Notation 3.3 For g= (gr), € PH'Y?(F) and f € L*(Q) we write
~APTQ =+ Z gr @ 0F
FeFing
if we have the variational formulation (1.7):

d e H\(Q), VU e H'(Q), /

egrad ® grad\II:/f\Ifdx—l— Z gr¥ do.
Q Q

FeFim v F

We use the analogous notation for Age“ based on the variational formulation (1.8) with the same
right hand side as above:

dc HY(Q), VI c H(Q), /ugradq) grad\I/:/f\I/dm—i— Z gr¥ do.
Q Q FeFn v F

Our first decomposition result yields a “regular” part in H*(2) and a “singular” part in the
form of a gradient, which contains in particular all the jumps through the interfaces.

Theorem 3.4 Any field v € X7 (Q, 1) admits a decomposition
v =1+ grad D, (3.1)
(

where ¥ € Hp(Q,1) and ® € H'(Q) satisfies —AJ"® = f + >z, 9F ®0F with f € L2(2)
g € PHY?(Fn) . Similarly any v € Xy (Q,¢) admits a decomposition (3.1) where ¥ € Hy(Q,1

and ¢ € ﬁ[l(Q) satisfies —AP"® = f+ 35 gr ®0p . In both cases there holds

)

190y + 151 oy + 16 g o,y < Cloll (3.2)

int

PROOF. We first note that with the help of a partition of unity, we can reduce to the case when
Q is simply connected.

Let v € Xp(Q,u). Since its curl is a L? divergence-free field we can apply Lemma 3.1 to
u = curlv and find ¥ € Hp(2,1) such that curly = curlv. Then v — 4 is a curl-free field.
As Q is simply connected, this is a gradient: there exists ® € H'(Q) such that v —1 = grad ® .
Obviously @ satisfies

YU € HY(Q), /ugrad@ grad ¥ = / w(v — ) grad ¥ dz,
Q Q



which enters the framework of Notation 3.3 with f = —div uv + div up , where the operator div
is the divergence in U;Q; (and not in ), and for all F' € Fin, gr = —[u], ¥ 1.

Now, if v € Xn(02,e), we note that curlv satisfies also curlv-n =0 on 99Q. Thus we can
apply Lemma 3.2 to obtain ¥ € Hx(£,1) such that curly = curlv. Then, as above, there
exists ® € H'(Q) such that v — 1 = grad®. Since (v —1) xn =0 on 9N, ® belongs to

H 1(Q) and the proof ends as above. [ |

Our second decomposition result is more in the spirit of the splittings given in [3, 4, 12] and
[5]. It consists in obtaining a “regular” part in Hr(Q, ) or Hy(,e) instead of Hr(Q,1) or
Hp(9Q,1) . For the assumptions and the proof of this statement we use some facts and terminology
about the behavior of the operators Allfe“ and AP with respect to the corners and edges of (2
and of its subdomains €); which we describe in the next section.

Theorem 3.5 (i) Let us assume that the operator Aﬁe“ has no edge exponent equal to 1 and

no corner exponent equal to % . Then any field v € X7(Q, 1) admits a decomposition

v = w + grad $, (3.3)

where w € Hp(Q, p) and ®g € H'(Q) satisfies —AN"®g € L?(Q) .

(ii) Let us assume that the operator AP™ has no edge exzponent equal to 1 and no corner exponent

equal to % . Then any field v € Xn(Q,¢e) admits a decomposition (3.3) where w € Hy(f,¢)

and ¥y € fll(Q) satisfies —APT®q € L2(Q) .

PROOF. (i) We start from the first decomposition (3.1) and split @ into two parts, each belonging
to HY(Q)) (see Theorem 4.1):

®=0)+ Py, with AN"®y € L*(Q) and & € PH*(Q,2).

We then set w = % 4 grad ®; which belongs to PH'(Q, 2) . Since AN®"®, € L?(Q2), grad &,
belongs to X7 (Q, ). Thus w also belongs to X7 (9, ) , therefore to Hr (€, 1) . The proof for
(i) is similar. [ |

4 Laplace interface singularities

As a synthesis of the thorough treatment of bidimensional interface problems in [18] and of
tridimensional monodomain boundary value problems in [9], we briefly present in this section the
regularity and splitting results for the Laplace interface operators AP™ and Aﬂe“ .

The notion of corner and edge is clear for a polyhedron in R?®. Concerning Q with its
polyhedral partition &2 , we call corner of (2, &) any point ¢ which is a corner of (at least) one
of the €); and edge any segment e which is an edge of one of the €; and either disjoint from
the other 2 or contained in one of their edges.

Let us give an illustrative example: ; and Qy are the unit cubes (0,1)3 and (—1,0) x
(0,1)?, and Q3 is the parallelepiped (—1,1)? x (—1,0) . Finally € is the interior of Q;UQ,UQ; .
The corners are the corners of Q and the points ¢; = (0,0,0), ¢z = (0,1,0), ¢35 = (0,1,1),
¢y = (0,0,1), e5 = (1,1,0) and ¢ = (—1,1,0). With the two other corners ¢; = (1,0,0)
and cg = (—1,0,0), the interface edges are [c1,co] (triple), [c2,¢3], [€3,¢4], [ca,€c1], [€1,¢7],
[e7,¢5], [e5,¢2], [c1,¢e8], [cs,cq], [cs,c2] (double).

Note that it is possible to have corners and edges contained in the interior of . This would
happen if we add to the example above the fourth domain Q4 = (—1,1) x (—=1,0) x (0,1) . Then
Q is the cube (—1,1)3, ¢; is an interior corner and is the end of interior edges.
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The general principle governing the properties of the operators AP™ and Afjeu relies on the
knowledge of the exponents A attached to each corner and edge of (£, %), which are the (here
real) numbers such that there exist non-polynomial pseudo-homogeneous solutions of degree A to
model problems on the cones or sectors I' associated with the corresponding corner or edge.

4.a Corner exponents

If ¢ is one fixed corner of (2, &), we shall use polar coordinates (p,?) centered at ¢ and
denote by I'. the polyhedral cone which coincides with € near c. To each ; containing c
there corresponds a unique cone I'c; C I'c and we denote by Fin. the set of interior (to I'c)
faces of Ol ; .

We then denote by G, the intersection of ', with the unit sphere. For any A € C, let us
set

Q
SMNT) = {W =Y log?p 0y(0) | 0 € H'(Go)}, (4.1)
q=0

which is the space of pseudo-homogeneous functions whose angular regularity is compatible with
the H' regularity of variational solutions. Fitting to the operator AP | we consider the subspace
Sy (Te) of SMT,) of the functions which are zero on dI'.. When A € N, we need two further
families of polynomial spaces (which are reduced to {0} if A & N) corresponding to solutions
and right hand sides respectively. Let Pj(I., &) be the subspace of S} (I'z) of the functions
which are polynomial in each T'c; and let Q*(I'c, &) be the space of the couples (f,g) with f
homogeneous polynomial of degree A—2 ineach I'c; and g = (gr) PeFi with gr homogeneous
polynomial of degree A — 1 in the interface F'. 1

The set AP™(I'.) of the corner ezponents of the Dirichlet operator AP is then the set of
the A € C such that there exist solutions ¥ € S3(T,) \ P3'(T'¢, &) to

—APTU =4+ Y gp@dp, with (f,9) € QMTe, 2), (4.2)
FGgint,c

(¢f Notation 3.3). We denote the space of these solutions by Zp; (Ic,€) . The sets AN"(T';) and
Z3ou(Te, 1) are defined similarly. Note that if ¢ is an interior corner, the spaces S3(I'c) and
SMT.) coincide and there is no influence of the external boundary conditions.

Since there holds
AZU(P(@) =0 = divregrad ¢+ A+ 1)y =0 )

with gradT and div,- the tangential gradient and divergence on G. , the set of corner exponents

in ¢ is related to the spectrum of the positive Dirichlet Laplace-Beltrami operator LEDE associated
with the quadratic form
(1, ) — (grad_ 1), grad ).
on the space L?(G,,e) with scalar product
(,0) — (¥, 0)e = / e do.
Ge
The operator LED’iCr is self-adjoint on L?(Ge,e) with a compact inverse. Let vy < vy < --- be its

eigenvalues and 1; be the corresponding eigenfunctions. Then one can show that

APFC)AN = {3 £\ /i1 =1\, (4.4)
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and, if A¢N
Z(Tese) = span{ p*05(0) | A= —1 £ Jv;+1 1. (4.5)

The situation is similar for Age“(Fc) and ZR.,(Te, p1) -

Relying on (4.3), we can prove that for any corner ¢, 0 ¢ AP™(T;) and 0 & A" (T,) .

4.b Edge exponents

Fix one edge e of 2 and denote by TI'. the two-dimensional plane sector such that T'e x R
coincides with €2 in a neighbourhood of an interior point of e. The polar coordinates in I’
are denoted (r,6), the cartesian coordinates in the plane of T'. are denoted y, and z is the
perpendicular coordinate. To each ); containing e there corresponds a unique sector I'c ; C I'e
and we denote by Fin the set of interior faces of Ol ; .

Like above, we can introduce the spaces S*(Tc), S3}(I'e) and Pg(Te, &) of homogeneous
functions of degree A\ in the sector I'e and the corresponding space for the right-hand sides
Q*Te, &) . Then the set AP(T,) of the edge exponents of the Dirichlet transmission operator
is defined exactly like above as the set of the A € C such that there exist solutions ¥ € S§(Te) \
Pg(Te, &) to

AP =4+ N gp®dp, with (f.9) € Qe 2), (4.6)
Feyint,e

where AP acting in the sector T', is simply the operator obtained from the corresponding three-
dimensional operator by dropping the variable z. Thus the edge exponents are the same as the
singularity exponents for two-dimensional interface problems, see [10, 16, 15, 19].

The intersection between I'c and the unit circle being denoted G, with (v;);>1 the spec-
trum of the positive Laplace-Beltrami operator LaDg associated with the quadratic form (¢, @) —
(091, Dpp)- on the space L?(Ge,¢), we have:

APE(r) = {E =1, (4.7)
Indeed, when A ¢ N this can be proved like (4.4) from the equivalence
APE(A(0) =0 == pedpp+ A2 =0 (4.8)
and when A € N this also relies on the equality for the dimensions of the polynomial spaces
dim P (T, 2) = dim Q*(Te, 2) = M. — I, (4.9)

where J. is the number of the sectors I'c; and I, = 0 if e is an internal edge and I, =1 if
not, see [9, Cor. (4.9)].
4.c Regularity and singularities

We first give a global statement, then provide a description of the singular solutions, which
requires the introduction of further notations.

Theorem 4.1 Let s >0, s# %, f € PHYQ,2) and g € PH*"Y/*(Fy). Let ® be the
solution of the problem

AT = f + Z gF @ IF.
Fegint
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(i) If for any corner ¢ and any edge e

AZ(Te) O (=505 = 3] =0 and AZ*(Te)N(0,5] =0,

257 3
then ® belongs to PH*T(Q, 2) .

(ii) If for any corner ¢ and any edge e
AZT(Te) Fs—5 and AD(Te) # s,

then ® admits a splitting ®o + ®1 into a reqular part ®, € PHS“(Q, P) and a singular part
Do € H'(Q) generated by the spaces Z{, (Te,e) and Z}(Te,e) for A in APT(De)N(—3,5—3)
and APT(T.)N(0,s) respectively. In particular, if s <1, APT®q = fo with fo € PH*~Y(Q, 2) .

For c intheset € of corners of (2, &) and A € AP¥(T,), let UXP be a basis of ZJ, (T, ¢)
and denote by ®)P the function defined as

2P (2) = Xelpe) VP (pes Ue), (4.10)

with a smooth cut-off function x. equal to 1 in a neighborhood of 0 and (p¢,9.) the polar
coordinates associated with c.

Similarly, for e in the set & of edges of (92, 2?) and A\ € AP™(T,), let UXP be a basis of
Z]’Sir(I’e, g) and denote by ®)* the function defined as
Ap — Ap ; _Te
PP () = Xe(pe) Vo (pesVe),  with  pe = T (4.11)
where Y. is a smooth cut-off function equal to 1 in a neighborhood of 0, d. a smooth function
on the closed edge &, which is equivalent to the distance to the endpoints of e and (7,0, ze)
the cylindrical coordinates associated with e .

In order to give a precise statement, we still need weighted Sobolev spaces for the edge singu-
larity coefficients and a smoothing operator, exactly as in [8]: Let for m € N and n € R, V*(e)
be defined as

m _ 2 +k ak 2 _
vie) = {y e L¥(e)| (de)™Foky e L¥(e), k=0,1,...,m}

and by interpolation for non-integer m . The smoothing operator J#[-] acts like a lifting of
functions on e into €2: in order to define it, we introduce the stretched variable

Ze 1
Z. = —— dz,
/0 de(2)

where z = 0 corresponds to an interior point of e . The change of variable z. +— Z. is one to one
e — R and for any function 7 defined on e, we set ¥(Ze) = ¥(ze) . Then JZ[V](pe,be, ze) is the
convolution operator with respect to Z :

r

1 t\ . - . e
K] (pe, Oes ze) —/R E(p(;) At — Ze) dt  with pe = €

where ¢ is a smooth function in .#(R) such that fR p=1.

Proposition 4.2 Let the assumptions of (ii) in Theorem 4.1 be satisfied. We assume moreover
that for any edge e, the set AP¥(T.) N[0, s] is contained in an interval of length < 1 (this is a
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technical assumption to avoid the “shadows” of the main singularities W) ). Then the singular
part ®q has the expansion

IE D DD DD W7 X S S D W W A Crd K S (4.12)

cE€EC Neg[-1,s—-3] P ecs \e[0,s] P

with the coefficients Y} in R and yM in V" Me). The sums extend over X\ in [3,s— 3N
APT(T,.) and [0,s] N APY(T,) , respectively.

5 Maxwell interface corner singularities

For shortness, we here describe the corner singularities of problem (1.5) (the singularities of
problem (1.6) are obtained similarly by exchanging Dir, ¢ and Neu, p respectively). We further
assume that  is simply connected.

We fix a corner ¢ of (€, 4?) and drop the index ¢ in the notations. At this stage, we look
for solutions of the homogeneous Maxwell interface systems in the spaces of pseudo-homogeneous
functions

Q
SN(T,e) = {u, € XN°(T7e) | div(ew) € HL(T), ul@) =p* Y logp Uq(ﬁ)},
q=0

where u € X0¢(I'", &) means that u € X¢(I'NV,¢), for all bounded open sets V' such that ¢ ¢
V : this space requires exactly the angular regularity corresponding to the effective regularity of the
variational solution (in particular, for the condition div(ew) € HL (I'*), we rely on Theorem 1.1).
In other words, we have to find the non-polynomial solutions of the system

curl(y~!curlu) — egraddiv(eu) = f in T,
div(eu) =0 on OT, (5.1)
u e SN(T,e),

when f is a homogeneous polynomial of degree A — 2 (thus it is zero if A\ & {2,3,...}). The
corresponding A\ are the Mazwell (Dirichlet) corner exponents.

Like in [8], this problem is split into three subproblems by introducing the auxiliary unknowns
Y=pteurlu and q=div(cu).

Using also the space S (T, i) defined like S (I',e) and the space S3(I') introduced in section
4.a, we then see that for A ¢ {2,3,...}, problem (5.1) is equivalent to finding non-polynomial
solutions to the system

~APrg =0 in T with ¢ € S37H(T). (5.2a)
curlyp =e¢ gradg and div(pyp) =0 in T with o € S5~ (T, p). (5.2b)
curlu =gy and div(eu) =¢ in T’ with w € Sy(T,¢). (5.2c)

Thus, the solutions of the system (5.2) belong to one of the three types:
Typel. ¢q=0, ¥ =0 and u general non-zero solution of (5.2¢).
Type 2. ¢ =0, v general non-zero solution of (5.2b) and w particular solution of (5.2¢).

Type 3. ¢ general non-zero solution of (5.2a), 1 particular solution of (5.2b) and w particular
solution of (5.2c).
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These three types of Maxwell singularities are now described with the help of the corner
singularities of AP™ and A,Ifeu . The singularities of type 1 are treated exactly as in [8, Lemma
7.4].

Lemma 5.1 We assume that A # —1. Then (i) is equivalent to (ii):
(i) u € SN(T,e) is a solution of (5.2) of type 1,
(i) A+ 1 belongs to AP™(T) and u = grad ® where ® belongs to Z) (T, e) .

For singularities of type 2 and 3, the jumps of the product eu through the interfaces require
a special attention.

Lemma 5.2 We assume that X is not an integer. Then (i) is equivalent to (ii):

(i) u € SN(T,¢) is a solution of (5.2) of type 2,

(i) X belongs to AN"(T) and curlu = pgrad ¥ where W belongs to ZRou (T, 1) . In that case,
a representative of type 2 is given by

1
w= S (;L (grad ¥ x ) + gradrN>, (5.3)

where ry € SM(T) is a solution of
APy = Fe; en] ((grad U X n) w) ’F ®F. (5.4)

ProOOF. We simply need to investigate the non-zero solutions (1, u) of (5.2) of type 2. First
anon-zero ¥ in Z3,,(T, ) yields a non-zero requested 1 = grad ¥ (because A # 0). It then
remains to find u € Sy (I, ) such that

curlu = ptp and div(ew) =0in T.
We are then looking for u of the form (5.3). In that case, we have
(A+1)curlu = curl(pgrad¥ x x)
= x-grad(py) — wp - gradx + pap dive — x div(py),
due to the identity (7.5b) of [8]. This yields
curlu = u,
because v is homogeneous, div(uty) =0 and one can show that

x - grad(py) = px - grad 1 in the distributional sense.

On the other hand, the conditions div(ew) =0 and w xn =0 on OI' will hold if (5.4) holds
since

div (ey (grad ¥ x sc)) = Z gr ® I,

Feyint,c
where
gr = [ep(grad¥ x x) - n|p

—lep(grad ¥ x n) - x|p = —[ep), ((grad\I/ Xn) - sc)‘F ,
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since grad ¥ X n has no jump across the interfaces. By Theorem 4.14 of [18], problem (5.4)
has a solution ry € SM(T') (in view of that Theorem, one sees that ry is homogeneous if
A+ 1¢ APY(T) and has the form ry = ro + 71 log p, with homogeneous ry and 71 if not).

This guarantees the existence of w . [ |
Similarly, we can show:
Lemma 5.3 We assume that A is not integer. Then (i) is equivalent to (ii):

(i) uwe Sy(T,e) isa solution of (5.2) of type 3, .
(i) A —1 belongs to AP™(T') and div(ew) = q where q belongs to Z7. *(T,e) .

To each q € Zégl(F,e) , a representative of type 3 is given by

1
P = X <E (grad g x =) + gradrT>,
where rr € S*T) is a solution of

AESHT‘T = Z le] - ((gradq X 1) a:) ’F ®0F,
FeZing,c

and, if A& A}jeu(F) , by
1
R W

where ry € SMY(T) s a solution of

APy = 3 [l (W xm)@)| @dr+ ((L-2wA+ 1+ )
FeZFing,c

(p (Y x x) + gradrN)

It remains to investigate the singularities of type 1 for A = —1 and of type 2 for A =0.

Lemma 5.4 (i) There is no singularity of type 1 for A= —1.
(ii) There is no singularity of type 2 for A =0.

PROOF. Since I' is simply connected, the first assertion is proved exactly as in Lemma 7.8 of
[8]: we obtain that if u belongs to Sy'(T,e) (resp. S;'(T, ) ) and satisfies curlu = 0 and
div(eu) =0 (resp. div(pu) =0), then ©v=0.

For the second one, we simply remark that if w is a singularity of type 2 in S%(I',¢) , then
Y =pteurlu € S:Fl(I‘,u)

is a solution of type 1 for magnetic boundary conditions. Therefore the first assertion yields ¥ = 0
and the conclusion follows. ]

Remark 5.5 The case I' not simply connected can be treated as in [8] and would yield topological
singular exponents. This case was avoided for brevity and is left to the reader. For other problems
with multiply-connected domains, see also [1, 11]. [ ]

Among the singular exponents obtained before, we select the subset Ayx(I') of A satisfying

A > —3 such that there exists a non-zero u € Sy(I',e) solution of (5.1) and satisfying (cf
Theorem 1.1)

xu € Xn(T,¢), div(xeu) € HY(T),

with a cut-off function x which is equal to 1 in a neighborhood of the corner ¢. We examine
the effect of this condition on the three types of singularities.
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Type 1. A+ 1 belongs to AP¥(T'). Since AP™(T')N[~1,0] is empty, with Lemma 5.4 we get the
condition A > —1.

Type 2. X € A*(T) . Since curl(yu) = x curlu+grad x x u has to be in L?(I')* , we have the
condition A > —3 . With Lemma 5.4, this yields A > 0, because the set A}*(I') N [-1,0]
is empty.

Type 3. Here A — 1 belongs to AP™(I'). Thus condition div(xeu) in H(T') implies that xq
belongs to H(T'), thus A —1 > f% , whence A —1> 0, or equivalently A > 1.

Type A > Generator u P q
1L | A+1€AP[M) | -1 | decz)'(T,e) | grad® 0 0
2 A e Ajen(T) 0 | Ve Zi, (T, u) | ¢fLem. 5.2 grad ¥ 0

3 A—1eAPrM) | 1 | g€ ZS;I(RE) ¢f Lem. 5.3 | ¢f Lem. 5.3 | ¢

Table 1

Going back to the primitive Maxwell equations (1.1), we see that for a regular current density
J, div(eE) and div(uH) are regular too, thus only the singularities of types 1 and 2 can occur
and they exchange each other between the electric and magnetic fields (here A denotes the degree

of homogeneity of the generator and is either the degree of E or H and k = ;j‘r’l ):

Type | Generator A€ E H
Elec. d e 2. | ADT grad® —k (e grad® x x + gradr,,)
Magn. | ¥ € Zﬁeu’u Aﬁeu k (pgrad¥ xx 4 gradr, ) grad¥

Table 2

This table gives the principal parts of the singularities, indeed from (1.5) and (1.6) we see that
the operators are not homogeneous and therefore the singularities have an asymptotic expansion
13, 9].

6 Maxwell interface edge singularities

In this section, our aim is to describe shortly the edge singularities of problem (1.5). Fix one
edge e of (2, Z), see §4.b for the associated definitions (we drop here the index e ). Let A € C.
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According to the general rule [9], we search for (non-polynomial) solutions u € Sx(I' x R, ¢)
independent of z of the system

curl(p ! curlu) — egrad div(eu) = f in T xR,

with f independent of z and polynomial in the y variable. The corresponding A\ are the Mazwell
(Dirichlet) edge exponents. Let now (v,w) be the decomposition of the field w in the system
of cartesian coordinates (y,z). Then this system is split into 2 two-dimensional independent
problems in the sector T :

curl(p~!curlv) — egraddiv(ev) = f in I, f polynomial,

vxn=0 and div(ev)=0 on JT, (6.1)
v e Sx(T,e),
and
—div(u~'gradw) = f in I', f polynomial,
w=0 on OI, (6.2)
w € SMNT).

The problem (6.1) is simply the problem attached to two-dimensional Maxwell equations in a polyg-
onal domain, and (6.2) is the transmission Dirichlet problem whose set AEi_rl (T') of singularities is
well known.

For the two-dimensional “Maxwell-type” problem (6.1), as in 3D, we introduce two auxiliary
(scalar) variables

Yp=p tcurlv and ¢ = div(ev). (6.3)
Then for A\ ¢ N, we get the equivalent system
~APrg=divf inT with ¢ € Sy~ H(T). (6.4a)
curly =¢ gradq in T with 1 € SAH(T). (6.4b)
curlv = uyp, div(ew) =¢q in T with u € SN (T,¢). (6.4c)

If X\ is not a positive integer, as in the previous section, this system (6.4) is reduced to a
homogeneous one and the solutions split into singularities of types 1, 2 and 3. As in [8], the
singularities of type 2 do not exist (they appear in fact as singularities of the problem (6.2)), while
the singularities of type 1 and 3 are obtained like in §5 in relation with the edge exponents of
AD¥

If X is a positive integer, as in §4.b, we can check that the spaces of homogeneous polynomials
associated with the right hand sides and with the solutions have the same dimension. Thus the
Maxwell edge exponents are the A\ € C such that the system (6.4) has non-trivial solutions.

In view of (4.7), we can state:

Lemma 6.1 The set of the edge exponents associated with the edge e is
{)\ €ER | A—=1o0rA+1 belongs to AEir(F)} U ABifl (T).

If X & N* | the corresponding singular functions u = (v,w) are as follows:

(i) If A\+1€ APY(T), then w=0 and v is a Mazwell singularity of type 1, given by
v = grad (r>‘+1g0(0)),

when ¢ is an eigenvector of LBS associated with the eigenvalue (XA + 1) .
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(i) If A e ABifl (), then v =0 and w 1s a singularity associated with Agifl :
w = 1p(),
when ¢ is an eigenvector of LEiflye associated with the eigenvalue A2 .
(iii) If X —1¢€ AP™(T), then w =0 and v is a Mazwell singularity of type 3.

The singularities in point (i) of the lemma are, in fact, closely related to the type 2 corner
singularities. This is seen from the following result.

Lemma 6.2 We have the identity between the sets of Laplace edge exponents
Di N
A% (I') = A, ()
and more precisely we have the equivalence between the singular functions

I Y(0) € ZiewTp) < pr* 0o € Zh; (T, ™).

PROOF.  The proof uses the fact that in dimension 2 the passage to the conjugate harmonic
functions interchanges tangential and normal derivatives. This implies that a singular function
¥ belongs to Z{,, (T, 1) if and only if p¥ € ZJ, (T, u~1), where on each sector I';, W is the

harmonic conjugate of ¥. Since for our homogeneous functions, ¥ can be expressed by the
angular derivative, we can make this idea more precise as follows: Let Aﬁe“(ﬁ‘w(e)) =0in I.
This means that

DppOgrh + N2 = 0,  thus =10 (udgrp) + X21h = 0.

Setting ¢ = udptp , the interface conditions [¢)] =0 and [udp)] =0 imply therefore that [¢] =0
and [u~10p¢] = 0. Whence the lemma. |

As before, we have to consider the subset of the edge exponents A satisfying A > —1 such
that there exists a non-zero u € SA (T x R,e) independent of the variable z, solution of the
homogeneous system (6.1)-(6.2) and satisfying

curl(yu) € L*(I")3, div,(xeu) € H(T),

with x a cut-off function which is equal to 1 in a neighborhood of the corner of I'. The effect
of this condition on each of the singularities (4), (%) and (ii7) in Lemma 6.1 is easily checked and
can be summarized as follows:

(i) In this case A\; = A — 1, with A € AP"™(T") and the condition is A; > —1.
(#) In this case g € AEi_rl ("), thus A2 has to be positive.

(iii) In this case A3 = A+ 1, with A € AP™(T) | then the condition is A3 > 1.

7 Conclusions

7.a Regularity

Taking advantage of the information about corner and edge exponents and singularities col-
lected in sections 4 to 6 and using Theorems 4.1 of [8] (which also hold in our setting with the
natural adaptations due to the interfaces), we are now able to give regularity results.
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As always, the regularity depends on the smallest corner and edge exponents. So, for any edge
e in the set & of the edges of (92, 4), we introduce the smallest exponent attached to AP

APY =y, with v the first eigenvalue of LDIf

and the smallest exponent attached to A/Ije”

/\Eee“ =V, with v the first non-zero eigenvalue of Lier

We have the following lower estimates for AP¥ (and similar ones for ANS"). Proofs are given in
§8.
(i) With p. the quotient of the minimum of ¢ by its maximum in the neighborhood of e, a

lower estimate of the Rayleigh quotient of ng yields

AP > pe AP (7.1)

(i) If e is an external edge:

e For two subdomains in a convex angle ,\Efg > % .

e For two subdomains in a non-convex angle AP > 1. [19].

e For three subdomains (even in a convex angle) AP¥ >0, [14].
(i1i) If e is an internal edge:

e For two subdomains )\23 > % .

e For three subdomains )\23 > % .

For four subdomains AP¥ > 0.

The estimates in (4i) and (i) are generically optimal in the sense that there exist choices of T’
and € so that )\ED’ler is arbitrarily close to the lower bound.

Similarly, for any corner ¢ in the set € of the corners of (Q, &), we introduce the smallest
exponent attached to AP (see §4.a)

AP = min (AP 1 (~1,00))
and the smallest exponent attached to Allfe“
N : N 1
)\Nﬁ:‘l = mln(Au)ec“ N(-3, oo))

In general )\EDj:r is the minimum of 2 and of —% +a/v+ % , with v the first eigenvalue of Lgicr ,
and similarly for /\Efc“ . In any case, )\Bicr and )\Efc‘l are > 0 and satisfy a lower estimate like
(7.1) by the exponents associated with one material in the same corner.

Let now set

oP" = min { min ADY | min ADY + 1
ecs 7 cee 7’
and Uge“ = min ( min )\Ei‘l , in )\Eecu +1].
ec& ¢ 7 e M°

In fact, the regularity result (i) of Theorem 4.1 holds with any s < oD for the operator AD'
and with any s < ollfe“ for the operator Allfe“ .
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Theorem 7.1 Let s >1 and f € PH* Y(Q, ). Let u € Xn(,€) be the solution of problem
(1.5). For any 7 € (0,5 + 1] such that

7 < min{oP" | a}feu + 1},

u belongs to PH™(Q2, &) .

Examples
(i) If Q contains only two subdomains, then w € PH™(Q, 2) forall 7 < 1.
(i1) If © is convex and has two subdomains, then u € PH™(Q, &) forall 7 < 1.

(ii) If Q is a parallelepiped divided into two subdomains separated by a plane parallel to two
faces, then w € PH™(Q), %) forall 7 < 2.

But note that, as soon as three subdomains have an exterior common edge, or four subdomains
have an interior common edge, the regularity of w can be arbitrarily low (near L?). Such a
situation occurs when the ratio p. is very small.

7.b Singularities

In this whole subsection s > 1, the data f belongs to PH* 1(Q, %) and wu is the solution
of problem (1.5).

A. We assume that s is such that there is no Maxwell Dirichlet corner exponent equal to s — %
and no Maxwell Dirichlet edge exponent equal to s. Then w can be split in wg + w; where u,
belongs to PH*'1(Q, %) and wug is the sum of contributions of the corners and the edges. If
we assume moreover like in Proposition 4.2, that for any edge e, the set of the edge exponents

€ [-1,s] is contained in an interval of length < 1, the function uo has a structure like ®( in

(4.12)
w o= YOY Yarwr XY Lamnwr (2

cE€EC Neg[-3,s—3] P ecé& Xe[—-1,5] p

with u)®? and u}? defined like (4.10) and (4.11) from bases U} and UM of non-polynomial
solutions of problems (5.1) and (6.1)-(6.2). If U} has no logarithmic term, then the coeffi-
cient belongs to V**(e). For non-integer X, the functions UM and UMP are described in
Lemmas 5.1 - 6.1.

B. Let us fix o € [0,s] such that for any edge e, the set of the edge exponents belonging to
[~1,0] is contained in an interval of length < 1. Then for suitable coefficients v} € R and
P € Vi Me) the difference

“ - (z SOy e - Y Y z%musp) )

c€? Xe[-2,0-3] P ec& Xe[-1l,0] P

belongs to PHT1(Q, 2) .

If we take o = 0, or more generally

P — 1 <o < min(oP | afe“) (7.4)
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then the corner and edge singularities of type 2 and 3 disappear, therefore it only gradients remain
in the singular part, which can be written as (cf §4.c)

Z Z Z Ve P Xc pc grad \I’/\-H’p(p s )

cE? )\6[75,075] (75)

+ Z Z Z %/ ,p Xe Pe) grad, \Il)\+1p(peaee)7

ec& \e[—
with grad, the gradient in the variable ¢, = ye/de .

Remark 7.2 In the splitting (7.5), the singular generators can also be expressed as curls since for
a homogeneous function ¥ of degree A satisfying APTW =0, we have:

e(A+1)grad ¥ = curl(egrad ¥ x x)

and

grad, (p2p(0.)) = curl. (p2(6.)),
when ¢ = f%gp’ (recalling that ¢ satisfies (e¢’)’ = —A2gp ), with curl, the two-dimensional
vectorial curl in the y. plane, completed by a zero tangential component along the edge. [ |

As in [8], we can write the singular part (7.5) as a gradient in a global way, because Lemmas
8.2 and 8.4 of [8] are (mainly) independent of the operator in consideration. Consequently, in
connection with the splitting (4.12), we have

Theorem 7.3 Assume that s > 1, the data f belongs to PH*~Y(Q, %) and w is the solution

of problem (1.5). Let o < s+ 1 so that (7.4) holds. Then there exists ® € fOIl(Q) satisfying
—APT® € PHO(Q, &) such that

u—grad® € PH ™ (Q, ).
When o = 0, the above statement reduces to Theorem 3.5 (ii).

8 Appendix

In this section, we prove some lower estimates for the exponents of singularity for transmission
problems for the Laplacian in dimension two. We have to consider the following situation:

I' is described in polar coordinates (r,0) by 0 < <w (0<w <2m)orby 0<6 <27
(w=27). The interval [0,w] is divided in J subintervals by 0 =wp < w1 < ... <wy =w. The
function e is positive and constant on each subinterval: € =¢; for 6 € (wj_1,w;) .

The function u is homogeneous in I' and satisfies
APy =0 [or ANeuy =0].

Thus u(r,8) = r*v(f) with A > 0 and v is a linear combination of sinAf and cos A@ in each
(wj—1,w;) satisfying the boundary conditions

v(0) = v(w) =0 [or v/ (0) =0 (w)=0],
and the transmission conditions
0] =0 and [e0/]=0 at §=w,.

Under these conditions, we have the following result
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Theorem 8.1
(i) (External edge)
If w<2m and J =2, then A\ > = .

(ii) (Internal edge)
If w=2m and J =2, then \ >

If w=2m and J =3, then \ >

(iii) If w<2m and J >3 orif w=2r and J >4, then for any o > 0 there exist e1,...,¢e;
and a function u# 0 with 0 <A < Ag .

ENTE NI

PROOF. (i) Consider first the case of Dirichlet conditions: The function v is continuous on
[0,w] , piecewise analytic, vanishes at 0 and w, and its derivative satisfies &1’ (w; ) = €90’ (w]) .
One can assume that v has a positive maximum in w* € (0,w) . It follows that v'(w*) =0, even if
w* = wj , because v’ does not change its sign there. In one of the two sectors (0,w*) (if w* <wj)
or (w*w) (if w* > w; ), the function wu therefore satisfies a mixed Dirichlet-Neumann problem
without interface, for which one knows the lowest singularity exponent 7/2w* or 7/2(w — w*).
Thus

P D Pp— T
T 2w T 2wy 2w T 2w —w*) T 2w—w1) 2w
For exterior Neumann conditions, we have v/(0) = v'(w) = 0. Since v is an eigenfunction of the
Laplace-Beltrami Neumann problem, it is orthogonal to constants:

/‘” v(0) e(9) db = 0.

As e is positive, v has at least one zero: v(w*) = 0. Once again, on either (0,w*) or (w*,w),
we obtain a mixed Dirichlet-Neumann problem and the estimate

A> mi { 0 T } S T
ming — , ————— —

- 2wy 7 2(w —wq) 2w

(i) If w = 27, we can again use that v is orthogonal to constant functions:
2

f 0 "vedf = 0. This time, we conclude that v has at least two distinct zeros

0 <w* <w* <2m; v(w*) =v(w*)=0. In the two sectors

r*={(r6) |w" <0 <w™} and T ={(r0)|w™ <0 <21 +w"}
our function u solves therefore the transmission problem with exterior Dirichlet conditions, and

we are back to case ().

If J =2, we can either argue that one of I'* or I'™* is convex, or that one of the two sectors
contains only one material. Both arguments give the result A > % .

If J =3, then one of the two sectors contains at most two materials, thus from (i) follows A > 1.

(iii) For the case J =4, we give the following explicit example: let

Gl :(_%a%)a GQZ(%7%)7 G3:(%7%)a G4:(_%T7ra_

).

IS

and

e1=¢e3=h and e9=¢4=1.
Let v be defined as sin A0 in G1, ncosA(5 —0) in Gy, sinA(m —0) in Gz, —ncosA(F +0)
in Gy. Then u(r,0) = r*v(f) is a singular function for our transmission problem if and only if

A
77:tanz7T and h=n>
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We see that A -0 as h — 0.
Since w satisfies Dirichlet conditions at § =0 and 6 = 7w, the same example solves a 3-material

problem with exterior Dirichlet conditions.

This example can be easily adapted to more general geometries. [ ]

Remark 8.2 In the example of the proof of (iii), we have a three-material Dirichlet problem with
a smooth exterior boundary. If we assume homogeneous magnetic properties, we have no type 1
edge singularity for the magnetic field there. The type 2 edge singularity has only regularity H'*?
for § < XAg . [ |
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