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Abstract.  We present a method for the computation of the coefficients of singularities
along the edges of a polyhedron for second order elliptic boundary value problems. The
class of problems considered includes problems of stress concentration along edges or
crack fronts in general linear three-dimensional elasticity. Our method uses an incom-
plete construction of 3D dual singular functions, based on explicitly known dual singular
functions of 2D problems tensorized by test functions along the edge and combined with
complementary terms improving their orthogonality properties with respect to the edge
singularities. Our method is aimed at the numerical computation of the stress intensity
functions. It is suitable for a post-processing procedure in the finite el ement approxima-
tion of the solution of the boundary value problem.

1 THE PROBLEM

1.A INTRODUCTION

The solutions of dliptic boundary problems, for example those arising from linear elas-
ticity, when posed and solved in non-smooth domains like polygons and polyhedra, have
non-smooth parts. It iswell known how to describe these singularities in terms of specia
singular functions depending on the geometry and the differential operators on one hand,
and of unknown coefficients depending on the given right hand sides (for example volume
forces and surface tractions or displacements) on the other hand.

Concerning the singular functions, they are extensively covered in the literature. In
many cases like corners in two dimensions or edges in three dimensions, they can be
written analytically (see for example [18, 3, 29]) or semi-analytically [12]. In other cases
like polyhedral corners, there exist well-known numerical methods for their computation
(seefor example[1, 35, 33, 36]).

Concerning the coefficients, there are two cases to distinguish, corners and edges:

1. In the case of a corner in two or three dimensions, i. e. the vertex of a cone,
the space of singular functions up to a given regularity is finite-dimensional. Therefore



only finitely many numbers have to be computed, and there exist several well-established
methods to do this. Let us mention some of them:

In the “singular function method”, in the finite element literature also known as Fix
method, singular basis functions are added to the space of trial functions, so that their
coefficients are computed immediately as a part of the numerical solution of the boundary
value problem (see[4, 6, 8, 17, 28, 32]).

In the “dual singular function method”, one uses the fact that the coefficients depend
linearly on the solution and therefore also on the right hand side, see [21, 23] where this
wasfirst developped. There exist several different waysto expressthese linear functionals
that extract the coefficients. One can use functionals acting on the solution of the bound-
ary value problem and these can then have a smple explicit form and can be localized.
Or one can write them as functionals acting directly on the right hand side. These are
the dual singular functions properly speaking, and they are solutions of a boundary value
problem themselves (see [5, 15, 16, 7, 2, 34]).

2. In the case of an edge in three dimensions, the space of singular functions is
infinite-dimensional. Theoretical formulas for the extraction of coefficients then involve
an infinite number of dual singular functionsin general, see[22, 26]. The coefficients can
be understood as functions defined on the edge, and their computation now requires ap-
proximation of function spaces on the edge. There exist some papers describing versions
of the singular function method in this case. In [13], the case of a half-space crack in
three-dimensional elasticity is considered. An algorithm is proposed and analyzed con-
sisting of boundary elements on the crack surface combined with singular elements that
are parametrized by one-dimensional finite elements on the crack front. This method and
the corresponding error analysis is described for smooth curved cracks in three dimen-
sionsin[31]. In[19], the simple case of acircular edgeistreated with Fourier expansion,
error estimates are given, and results of numerical computations are shown.

Every linear functional acting on the edge coefficient functions now gives rise to a
dua singular function. Such linear functionals can be the point evaluation at each point
of the edge or, more regularly, moments, i. e. scalar products with some polynomial basis
functions. Computing a finite number of such point values or moments, one obtains an
approximation of the coefficient function. Such a procedure has been studied in [20] for
the simple case of the Laplace equation at aflat crack. In [30] the coefficients are given
by convolution integrals which contain the dual singular functions, and examples for the
Lamé system are provided.

With the exception of the computations in the case of the simple geometries and op-
erators of [19] and [20], the formulas and theoretical algorithmsfor the extraction of edge
coefficients mentioned above have not lead to numerical implementations or serious com-
putational results. A first step towards an algorithm suitable for implementation in an
engineering stress analysis code is described in [36], where point values of edge coeffi-
cients are computed in the case of the Laplace equation near a straight edge. Very specia



orthogonality conditions of the Laplace edge singular functions are used to construct ex-
traction formulas that are essentially two-dimensional.

Whereas this idea cannot be extended directly to more general geometrical and phys-
ical situations like Lamé equations in a polyhedral domain, our paper is an extension of
[36] to such situations in the practical sense of suitability for implementation in engineer-
ing codes.

1.8 OUTLINE

In the present paper we construct an algorithm for the approximate computation of mo-
ments of the edge coefficient functions. The algorithm has a twofold purpose: It is
sufficiently general to be applicable to rea-life three-dimensional boundary value prob-
lems and their singularities near polyhedral edges, and it is smple enough to be imple-
mented in the framework of professional finite element codes. In aforthcoming paper we
will show practical applicationsin the computation of stress concentration coefficientsin
three-dimensional anisotropic elasticity.

Our paper is organized as follows:

After a more detailed description of the idea of our algorithm in this first section,
we recall in Section 2 the structure of edge singularities for second order linear Dirichlet
boundary value problemsin three dimensions. We describe how the leading term in each
singular function is obtained from a two-dimensional problem in a sector and can be
computed from the principal Mellin symbol of the partial differentia operator. For a
complete description of the singular function one has to construct higher order “shadow
terms” for which we also give formulas involving Mellin symbols of the operator.

In Section 3, the structure of dual singular functions is described first in two dimen-
sions and then for the case of the three-dimensional edge. The dual singular functions
have an asymptotic expansion in terms that have tensor product form in cylindrical coor-
dinates and are homogeneous with respect to the distance to the edge. This form allows
us to prove a certain approximate duality between finite partial sums of these asymptotic
expansions. These sums can be constructed explicitly from the Mellin symbols of the
operator, and the duality holds approximately on cylindrical domainsin the sense that the
error is of the order of an arbitrarily high power of the radius of the cylinder.

In Section 4, we construct the extraction algorithm for moments of the coefficients
of the edge singularities. The algorithm requires the integration of the solution of the
boundary value problem against a smooth function on acylindrical surface of distance R
to the edge, and it is exact modulo a given arbitrarily high power of R.

In Section 5, we discuss generalizations to more general domains and boundary con-
ditions, and the special case of a crack.

In Section 6, we compare our algorithm with possible aternatives based on other
formulas for the extraction of coefficients.



Figure 1. The domain of interest (2.

1.c THE MAIN FRAMEWORK

Any three-dimensional elliptic boundary value problem posed on a polyhedron defines
infinite dimensional singularity spaces corresponding to each of the edges. Each singu-
larity along an edge E is characterized:

e by an exponent o« which is a complex number depending only on the geometry and
the operator, and which determines the level of non-smoothness of the singularity,

e and by acoefficient a, whichisafunction alongtheedge E .

Of great interest are the coefficients a,, when Re « islessthan 1, corresponding to
non H? solutions. In many situations, Rea < 1 when the opening at the edge is non-
convex. For example o can be equal to % in elasticity problems in presence of cracks.
Sometimes in such a situation the coefficients are called stress intensity factors. Herein
we propose a method for the computation of these coefficients, which can be applied to
any edge (including crack front) of any polyhedron.

For the exposition of the method we use amodel domain €2 where only one edge E
isof interest (in particular, £ will be the only possible non-convex edge). Nevertheless
this method applies, almost without alteration, to any polyhedron, see Section 5.

Asmodel domain, wetakethetensor product 2 = G x I where I isaninterval, let us
say [—1,1],and G isaplane bounded sector of opening w € (0, 27] and radius 1 (the
caseof acrack, w = 27, isincluded). See Figure 1. Thevariablesare (z,y) in G and z
in I, and we denote the coordinates (z,y,z) by x. Let (r,0) bethe polar coordinates
centered at the vertex of G sothat G = {(z,y) € R* | r € (0,1), § € (0,w)}. The
domain 2 hasanedge E whichistheset {(z,y,2) €ER3|r =0, z € I}.



The operator L is a homogeneous second order partial differential NV x N system
with constant real coefficients which means that

3 3
. 0
L= ZZLU&GJ with 81 = %, (92 = 9 83 = —

=1 i=1

9 9
y?

with coefficient matrices L;; in RV*Y . We moreover assume that the matrices L;; are
symmetric. Therefore L isformally self-adjoint.

We assume moreover that L is associated with an éliptic bilinear form B, i.e. that
forany u and v in H%(Q)" and any subdomain €' C ) there holds

/Lu-vdx = B(u,v)—k/Tpu-vda
= /U'LUdX+/(TFIU'U—U'TF/’U)dO',

where Tt is the Neumann trace operator associated with L via B on the boundary
IV of €. Our am is the determination of the edge structure of any solution « of the
problem

(1.1)

u€ Hy(Q), Yo e HY(Q), B(u,v) = / frvdx, (1.2
0

where f is a smooth vector function in €>(Q)" . Away from the end points of the
edge, the solution « can be expanded in edge singularities S|a; a,| associated with the
exponents « and the coefficients a,, . These singularities S|a; a,| arethe sumsof terms
in tensor product form 97a,(z) ®;[a](z,y), where only the generating coefficients a,
depend on theright hand side f of problem (1.2).

1.0 THEEXTRACTION METHOD

In this paper, we construct for each exponent « a set of quasidual singular functions
K™[a;b] where m isanatura integer, which isthe order of the quasidual function, and
b atest coefficient. We then extract, not the pointwise values of «,, , but its scalar product
versus b on E with the help of the following anti-symmetric internal boundary integrals
J[R], over the surface

lp={xeR’|r=R, 0c(0w), z€ I},
depending on the radius R :

J[R](u,v) := /F (Trpu-v —u-Tr,0) do. 1.3

Roughly, and with certain limitations, see Theorem 4.3 and its extensions in §5, we find
that for the lowest values of Re o/, there holds

JIR](u, K™[a:1]) = / 0a(2)B(z)dz+ 0 (R™), as R—0, (L)

1
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which allows a precise determination of [, a, b by extrapolationin R and areconstruc-
tion of a, by the choice of a suitable set of test coefficients 5.

One of the fundamental tools for the proof of (1.4) consists of algebraic relations
based on integration by parts in the domains (2. r , where for any ¢ and R with 0 <
e < R wedenoteby G. r theannulus

Ger = {(z,y) € R? |7 €(g,R), 0 € (0,w)},
and by Q. p thetensor domain G, p x I . We note that
89571{ = FE U FR U (GE,R X 8[)

Finally we also denote by G, the infinite sector of opening w and by 2., theinfinite
wedge G, x 1.

2 EDGE SINGULARITIES

Edge singularities are investigated in several works. Let us quote MAZ' YA, PLAME-
NEVSKII, ROSSMANN [24, 27], DAUGE, COSTABEL [14, 9]. Here as amodel problem,
we concentrate on the simplest case of ahomogeneous operator with constant coefficients.

The structure and the expansion of edge singularities rely on the splitting of the oper-
ator L inthree parts

L = My(0s,8,) + My(9,,0,) 0. + My 02,

where M, isa N x N matrix of second order partial differential operatorsin (z,vy),
M; isa N x N matrix of first order partial differential operatorsin (x,y),and M, isa
scalar N x N matrix.

We can check that for any smooth function a(z) in I and any sequence (®;) ;- of
functionsof (x,y) satisfying the relations

My®o =0,
My®, + M;Py =0, in Gs (21)
My®; + M D1 + My®;_5 =0, J =2,

the series
un Y 0a(z) @5z, y)
j>0
formally satisfies the equation Lu ~ 0 in €., . If moreover all derivatives of a are zero
in =1 andif the ®; satisfy the Dirichlet conditionson dG ., then u ~ 0 on 990 . In
order to provide a more precise meaning we need a description of solutions of the system
of equations (2.1).



2.A TWO-DIMENSIONAL LEADING SINGULARITIES

Thefirst terms @, are the solutions of the Dirichlet problem in the infinite sector

{MQCI)Q =0 in Go (22)

by = 0 on 0G .

From the general theory we know that the solutions of problem (2.2) are generated by
functions having the particular form in polar coordinates (r, )

(I>0 = TagO0<9), a e C. (23)

Sinceit is homogeneous of degree 2, the system M, can be writtenin polar coordinates
intheform
My(8s,0y) = r~>4,(0;70,, D).

With the Ansatz (2.3), the system (2.2) becomes

%Q(Q;Oé,ag)wo = 0 in (O,w)
{ o = 0 on 0 and w. (2.4)

The operator ¢ — .#,(0;«, 0g)¢ acting from H}(0,w) into H'(0,w) isthe Mellin
symbol of M, , and we denoteit by 9%y(«) .

The system (2.4) has nonzero solutions, i.e. My(«) isnot invertible, only for adis-
crete subset 2 = A(M,) of C. We call the numbers o € 2 the edge exponents.

The ellipticity of L implies the elipticity of M, and as a consequence, any strip
Rea € (&,&) contains a most a finite number of elements of 2(. As the coefficients
of M, areredl, if a belongsto 2, then a aso belongsto 2. Moreover we have the
genera property that

Mo ()" = M(—a),
where M («)* is the adjoint of My(a) and N denotes the Mellin symbol of the
adjoint M of M,.Now M, isformally selfadjoint: M; = M, , and there holds

Mo(a)" = My(—a).

By the Fredholm alternative, thisimpliesthat if « belongsto 2(, then —a also belongs
to 2A.

The operator valued function a — 9My(a)~! ismeromorphicon C. If
(91) VYa €2, « isapoleof degree 1 of Mi;*

then any solution of (2.2) is alinear combination of solutions of type (2.3) with a € A
and ¢, anonzero solution of (2.4). For simplicity we assume hypothesis (£,) and will
explain in the sequel the implicationsif it does not hold.
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2.8 FURTHER TWO-DIMENSIONAL GENERATORS FOR SINGULARITIES
The second equation of system (2.1) with Dirichlet conditions reducesto finding ¢; such
that

{Moq)l = —M;d, in Goo (25)

b, =0 on 0G,

where ¢, = r%py(0) asdetermined in the previous subsection. Since it is homogeneous
of degree 1, thesystem M; can be written in polar coordinates in the form

M1 (81;7 8y) = 7“_1%1 (9, r@r, 89)

Therefore, M, &y = r*~L.#,(0;a, 0p)po and an Ansatz like (2.3) for the solution of
problem (2.5) is
(I)l = 7,04+1901(9>7 (26)

with ¢, solution of the Dirichlet problem

Mo(0;00+1,09)p1 = —A1(0;0,09)0 in (0,w)
(2.7
pr = 0 on 0 and w,
in other words, ¢; solves My(a + 1)1 = —#1 (). Therefore, if o + 1 does

not belong to 2, the previous problem has a unique solution. That is why we assume
hypothesis ($),) :

(92) Vaoed, VjeN, j=>1, a+j¢d

If ($2) holds, then for each solution &, = r*p, of problem (2.4), we obtain by
induction a unique sequence (®;) ;», solution of (2.1) with Dirichlet conditions in the
form

(I)j = TCH_ngj(e)

where ¢, solves

Mo+ j)p; = —Ar(a+ j—1)pj1 — Magpj . (2.8)
We recall that M-, being a scalar matrix, has the same expression in Cartesian coordi-
nates asin polar coordinates (viz M, = .45).
2.C THREE-DIMENSIONAL SINGULARITIES

Assuming hypotheses ($);) and (92), for any a € 2 with Rea > 0, let p, denote
the dimension of the kernel of 9t,(«) and let ®y[a, p],for p=1,...,p,, beabasis of
ker My(«r) ; Moreover, forany j > 1 let ®;[a, p| bethe solution of (2.7) or (2.8) (also
called “ shadow singularities’ ) generated by ®q[a, p] .



For any integer n > 0 we call “ singularity at the order n” any expression of the
form

"a,p; a] = Zaﬂ pl(z,y) (2.9)
where a belongsto €™ +%(1) .
By construction, there holds
LS"[a,p; a] = 0" a (M@, + My®, 1) + 0" a My®,,. (2.10)
Whence
Lemma2.l Forany a € A, Rea > 0,and a € ¢"*2(I) we have
LS"[a,p; a] = O (rfeotT) (2.11)

i.e. r~Rea=ntlrGnln p; a] isboundedin 2. Moreover S™[a,p; al =0 on 0G x I .

3 DUAL SINGULAR FUNCTIONS

We first recall and reformulate well known facts about the dual singular functions
for two-dimensional problems, cf MAZ’ YA, PLAMENEVSKII [21, 23, 25], BABUSKA,
MILLER [2], BOURLARD, DAUGE, LUBUMA, NICAISE [15, 16] and then extend these
notions in the framework of our edge problem, so that we obtain what we call “ quasidual
singular functions” (compare with extraction functions in [1] by ANDERSSON, FALK,
BABUSKA) as opposed to exact dual singular functions cf MAZ’ YA, PLAMENEVSKII,
ROSSMANN [22, 26] (pointwise duality) and LENCZNER [20] (Sobolev duality).

3.A TWO-DIMENSIONAL DUAL SINGULAR FUNCTIONS

The two-dimensional operator is the homogeneous second order operator M, with real
coefficients. We develop its symbol .#,(«) in powersof o (of degree 2):

A (0; 1, Dp) = Ao(0; Dp) + N1 (0 0p) + a*A5(0). (3.1)
Since M, isself-adjoint, we can deduce that
o and 4, areself-adjoint and .47 isanti self-adjoint. (3.2

Lemma3.l Let o, g in A and ¢, ¢ inthekernelsof MNy(«), Mo(3) , respectively.
Then there holds the identity

<a+6>/Ow(m+<a—6>%>so~@de:o. (33)



PROOF. We start with the duality relation:

o= [CoTEw = [ muye T = [ m(-5e-T

Then we use the identity
Mo(—B) = Mo(a) = (B + )M + (B — a®)As.
From 9t («)¢ = 0, we obtain
= [(u-g)eT = [ (= Graysi+ (- an)e-
=~ B [ (Hitla=pm)e-T

|
Lemma3.2 Let o, 3, ¢ and ¢ beasinLemma 3.1.
() If —3 + a, then
| it ta=pne-v -0 (3.4)
(i) If —3 = « then the left hand side of (3.4) becomes
w o w o d o
| ireme s = [ (Eom@)e-v. 39

and, if we moreover assume hypothesis ();) , thenfor any basis (y[a, p]) | of ker My(a)
there exists a unique dual basis (¢[a,p])p of ker My(—a) such that

/0 (M + 2045) pla, p] - D], g = by . (3.6)

PrROOF. (i) isastraightforward consequence of Lemma 3.1.

(i) Identity (3.5) isclear. Concerning (3.6), we first note that since Mt («)* = My(—a) ,
the dimension of the kernel of 9%,(«) isequa to the codimension of the closure of the
range of 9My(—a) . On the other hand, asfor any o/ € C\ A, My(a’) isinvertible and
since My(a) — My(c’) isacompact operator, MNy(«) isa Fredholm operator of index
0. As aconsequence,

dim ker My () = dim ker My(—a).

In order to obtain (3.6) it suffices now to prove that if ¢ € ker My («) satisfies
Vi) € ker My(—a), / (/Vl + 2041/1/2)90 h =0,
0
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then ¢ = 0. If thisdoes not hold, thanks to (3.5) there exists ¢ € ker 9ty(a) such that
a4
da
By the Fredholm alternative, there exists ¢’ such that

Vi) € ker My(—a), /Ow (= Mo(e)) - ¥ = 0.

, . d B
Mo ()’ + o NMo(a)p = 0.

As a consequence the function
o — (@ =) M) (o + (o — a)¢)

has an analytic extension in « . This contradicts hypothesis (§);) according to which
M, ' hasapoleof order 1 in «. n

We end this subsection with a relation between the expression in the left hand sides
of (3.4) and (3.6) and atrace obtained by integration by parts.

Considering the Green formula (1.1) in the domain . p for functions « and v
which are zero on the two faces # = 0 and § = w of {2, we have contributions on the
parts I'p and I'. of the boundary of Q. p, where r = R and r = ¢ respectively. We
denote by 7'(r) the Neumann trace operator on I, . It hasthe form

T(r) =T(r,0;0,,0,0.) = r 'Ty(0;70,,0p) + T1(0) O- . (37)

We also have contributions of thelateral sides G r x 91 . Denoting by 7, the Neumann
trace on these sides, we have the Green formula:

/ Lu-v—u-Lvdx = // T(Ru-v—u-T(R)v Rdodz
QE,R I1J0 o
—// TE)u-v—u-T(e)vedfdz (3.8
1J0
+/ Toru-v—u-Tyvdo.
G‘E’RXBI

Applying the above identity to functions « and v independent of > (and zero on the two
sides = 0 and 6 = w), we note that the contributions on the two sides G. g x {1}
cancel out because the two Neumann operators 7%; which compose Tj; are opposite to
each other. Thus we obtain

/ Mou-v—u-Myvdexdy = /TO(R)U~U—U~T0(R)U(].(9

GER 0 w (39)

—/ To(e)u-v—u-Ty(e)v db,
0

where Ty(R) denotes T(6; RO, )

11



Lemma3.3 Let a and 3 becomplex numbersand ¢ and ) belongto Hj(0,w)™ . Set
P :=r2p(f) and W := r~F(h). For any R > 0 there holds

/w To(R)® -V — & - Ty(R)¥ df = R* /w (M + (a+ B)A3)p - df . (3.10)
0 0

Proor. Formula (3.9) and the splitting (3.1) of .#, = r>M, yieldforany ¢ < R
/ (Ao + 1041 + (102 A5)® T = @ (Mg + 10,41 + (r0,)45) T ) Ldrdf
GE,R w

= [ To(R)®-T —d Ty(R)T db

0

- / To(e)D - T — B - Ty(e)T db.
0
Since .4, issef-adjoint, integration by parts gives

/R ((% + 70, N + (r&T)QJI/Q)<I> U — P (J% + 1o M + (r@r){/l/g)@) %dr

E = [ NPT+ (rd,) HD - T — @ - (rd,) N30 "
We have
MP -V 4 (r8,)M3® - U — oD - (1D, )W = 1P (M- ) + o - ) + ¢ - BoAoy)
and as .15 issdf-adjoint, cf (3.2), wefinally obtain

(Mo -+ (a+ B)Map - ) (R*P —e*P) = /w To(R)® -V — & - Ty(R)V df
- /w To(e)® - U — @ - Ty(e) W db.

Now the right hand side of the above equality has also the form c(a, 3)(R*# — g2 F),
and we deduce (3.10) for any a # (. Sincefor fixed 3, ¢, ¥ and R, both members
of (3.10) depend continuously on «, we deduce (3.10) for o = by continuity. [ |

3.8 THREE-DIMENSIONAL DUAL SINGULAR FUNCTIONS

We assume hypotheses ($;) and ($)2), and for any o € A, Rea > 0, we choose a
basis p[a,p], p=1,...,p, Of ker My(«) . Thenwedenoteby ¥[a,p], p=1,...,pa,
the corresponding dual basis according to Lemma 3.2. We recall that we have denoted
repla, p] by ®gla, p] and that associated singularities at the order n are definedin (2.9).

Following the same lines, we set

‘IIO [Oé,p] = Tﬁaw{aap]

12



and for any integer n > 0, we define the “ quasidual singular function at the order n”
by

K"o,ps; b] := > 99b(2) ¥y[a, pl(x,y) (3.11)
§=0
where b belongs to 4™**(I) and the sequence (¥;) ., is defined by induction as
solution of (2.1) intheform
Wy =1y (0)
where v; solves
Mo(—a +j)v; = —Ah(—a+j — )hj1 — Maphj». (312)

Of course, K"[a,p;b] isbut S"[—a,p;b] (generated by W, ). Therefore by (2.11)
thereholdsforany o € A, Rea > 0,and b € €"+*(I) :

LK"[a,p; b] = 0 (r~Reetn=1y. (3.13)

In the next Proposition we state that the singularities S™[«, p; a] and the quasidua sin-
gular functions K™[3, q; b] arein duality with each other (modulo aremainder) if linked
by the following antisymmetric sesquilinear form

J[R](u,v) := /

I'r

(Tu-v—u-Tv)dUZ/I/o (Tw-v—u-Tv)| _, Rdfdz, (3.14)

where 7' = T'(R) istheradial Neumann trace operator (3.7).

Proposition 3.4 Let «, 5 € A with Rea, Re3 > 0. We assume that hypotheses ()
and ($,) hold. For aninteger n > 0, let the coefficients a and b bein € 2(I). We
assume moreover that 976 =0 for j =0,...,n—1 on OI. Thenfor any R > ( there
holds

J[R] (Sn[a,p; al , K"[03,q; b]) = da,8 5p7q/1a(z) b(z)dz + ﬁ(RRea_Reﬁ+”+1) . (3.15)

PrROOF. We use the Green formula (3.8) on G, i for
u=S"a,p;al ad v=K"a,q; bl
Since u = ¢ (r**®) and v = ¢ (r~%°#), (2.11) and (3.13) imply

R
/ Lu-v—u-Lvdx=0 (/ pRea—Ref+n—1 rdr) .
QE,R &€

With formula (2.10), we even obtain the more precise expression:

2n R
/ Lu-v—u-Lvdx = Z wk/ ra PR rdr
QS,R 3

k=n—1
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with coefficients ~, independent of R and e . Asaconsequence of hypothesis ($,) we
know that o — 3 + k isdifferent from —1 for k =n,...,2n+ 1. Thus

2n+2

/ Lu-v—wu-Lvdx = Z )\k(RafﬂJrk_gafﬁJrk)’
Q. Rr

k=n-+1

with coefficients ), independent of R and . For the boundary integral J[r|(u,v)
(3.14), we omit the mention of (u,v) . Thusthe Green formula (3.8) gives

2n+2

JIR] — JIe] +/ Toru-v —u- Ty rdrdd = Z i (Ra*ﬁ”k - ga*ﬁ%)_

GE,RXBI k=n4+1

As Ty, isof theform r='Ty; o(0;70,,9y) + Tor1(0) 0. , cf (3.7), and astheends dI are
zeros of order n of b, we areleft with

T@[U-’U—U~Taﬂ] = Taﬂi-@?b \Ifn —u@?b (T_lTaLO\Ifn—{—Ta[,l‘Ifn_l) —u-82+1bTa]71\I/n.

Integrating on G, r x 01 and using the structure of ¥ , we obtain as before

2n+2
Ta[U U —U- Ta[U = Z )\;g (Ra—ﬂ‘i‘k _ ga—ﬁ-i-k)‘
k=n-+1
From the last three equalities we obtain
2n+2
JIR] = Jle] = Y Ni(RoTPH —enmitE), (3.16)
k=n+1

It remainsto expand J[r] in homogeneous parts. we have

2n+1
Jr) =) Jre O (3.17)

k=0

with, cf (3.7),

J=Y /I /0 0005 (To(6: 0+ 5, 00), - Ty — 0, - To(6: B + €, 00)0, ) dbd

=k

(3.18)
> / / (02710 0B 1100 s - T, — a0l b, - Ty(6)T, ) b,
jt=k—17 170
Combining (3.16) with (3.17) we obtain
2n+1 2n+2
Z Jk<Ra—ﬁ+k . 8a—5+k) _ Z )\/k/ (Ra—ﬂ—i-k . ga—ﬁ—i-k)‘
k=0 k=n+1
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By identification of terms, we immediately deduce that
Vi <n, Jy(ROOF —gamhthy =,

Therefore
Vk <n suchthat a — +k#0, J,=0.

By hypothesis (£)2) , thenumber o« — 5+ k canbe 0 only if £ = 0. Therefore
Ve, 1<k<n, Jy=0 and Va,0€A, a#[, Jy=0.

In order to obtain (3.15), it remainsto study .J, when o = 3. Formula(3.18) yields for
J(] .

Jo = /I/Owab <T0(9;a,89)<po[a,p] ~ola, q] — wyle pl - To(0; -5, 89)@0[044]) dodz

Applying Lemma3.3for a = 3 we have

Jo = (/Iabdz> </0w (JVl +204Jl/g)gp[a,p] Y, q] dG)

and with the orthogonality relation (3.6) we deduce that
Jo = 5p7q/a5 dz.
1

Note that in formula (3.18), we can integrate by parts in z without any boundary
contribution for & < n, because 3’b =0 for j =0,...,n— 1 on OI . Therefore

Jr = (/a@fl_)dz> Hilo,p s 8,4| (3.19
I
where
s Bl =3 [0 (TolOia .00y T 3 Tolls =5+ £.00), ) o
T (3.20)
S / O U+ 5 Tu(6)D,)db.
jHl=k—1 0

As a consequence of the proof of Proposition 3.4 we have
\V/OZ, 6 € Qla Vpa q, vk S N7 Hk[aapa 5’(]] = 6]6,0 6o¢ﬂ 6p,q' (321)

Later on, we will use formula (3.21), and not Proposition 3.4, to extract the singularity
coefficients of atrue solution of problem (1.2).
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4 EXTRACTION OF SINGULARITY COEFFICIENTS

In this section, we first describe asymptotic expansions of the solution « of problem
(1.2). Theright hand side f is () and we supposein apreliminary stepthat f =0
in aneighborhood of theedge £ . Theexpansionsof « show edge singularity coefficients
a., aong the edge E. We propose a method based on the duality formula (3.15) to

determine these coefficients.

4.A EXPANSION OF THE SOLUTION ALONG THE EDGE

The edge expansions are only valid away from the sides G x 01 . Thisisthe reason why
we introduce for any § € (0,1) the subinterval

]5:(_1+571_5)7

and consider the subdomains GG x I5. We need the introduction of weighted spaces to
describe the remaindersin the expansions. For £ € R, let

V(G x I;) i= {v € €°(G x I;) | Vm € N* ¢=rimlgmy ¢ 1(G x I5) ).
There holds, cf [27]

Theorem 4.1 Let § € (0,1) and n > 0 begiven. Thenfor any o € 2 suchthat Rea €
(0,n7) andforany p € {1,...,p.} , thereexistsa unique coefficient a, , € €*°(I5) such
that

u— Z ZS” [, p; aap| € V(G X Iy), 4.1)

a, 0<Rea<n p

where n = n(«) isthesmallest integer suchthat Rea+n > n.

Letting 0 tend to 0, this clearly defines unique coefficients a,, in ¢>°(I) such
that for any 6 (4.1) holds with a,, } 5 - But this does not imply that (4.1) holdsin
because in genera the remainderson G x Is depend on § and their norms blow up as
§ — 0. Thisisdueto the presence of corner singularities at the corners c¢* := (0,0, =1).
We have to analyze these corner singularitiesin order to obtain uniform estimatesin 2.

4B CORNER EXPONENTS

We describe the situation in a neighborhood of the corner ¢t and particularize the nota-
tions by the superscript * . A similar situation holds for the other corner ¢~ . Let K be
the infinite cone coinciding with 2 in aneighborhood of ¢* . Let St denote the sphere
of radius 1 centered at c*, p' thedistanceto ¢* and ¥* coordinateson S*. Thus
(pT,v") arespherical coordinates centeredat ¢ . Letfinaly S* denotetheintersection
St N K. Theoperator L can be written in these spherical coordinates as

L= (p") 224 (0" pT0pr, 0+ ),
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which defines the Mellin symbol v — £ (~) of L a c*,where £*(y) isthe operator
¢ — LT (977,094 )¢ acting from H}(ST) into H~'(ST). Wedenoteby &+ the set
of v € C suchthat £%(y) isnotinvertible. We call these ~ the corner exponents. We
introduce the analogue of hypothesis ($);) for £+ :

(93) Vy e &t v isapoleof degree 1 of (£7)7t.

For each v € &+, wedenoteby ¢[v,q], ¢=1,...,¢,,abasisof ker £ (v).

We need anew family of weighted spaces: Let usintroduce »* on S* asthedistance
to the corner (r = 0,z = 0) of St corresponding to the edge £ and extend it by
homogeneity: r*(x) = r* (¢ (x)) . Note that we have the equivalence

rt(x) ~r(x)/pt(x). (4.2

In the same way we define 7+ on S as the distance to the two other corners of S :
(r=1,0=0,z=1) and (r=1,0 =w,z=1) and extend 7 by homogeneity. We

definefor ¢ > —1 and n > 0:

Ten(QF) ={ veF>(Qh)|
vm € N3, (pt)-&Hml () =ntiml (pH)migmy, ¢ Loo(OF)

with QF = G x (0, 1) . There holds the corner expansion for any fixed ¢ > —1:

w— Y > e (7)), dl(97) € Ve o(2F), (4.3)

v, —1/2<Revy<€¢ ¢

where the coefficients ¢, , are complex numbers. Note that the remainder in (4.3) is
flat with respect to the “distance” p™ to the corner ¢t and not with respect to the edge
E . Thus, the expansions (4.1) and (4.3) give complementary and seemingly independent
information about the structure of w« .

In fact, we will only use this result to obtain the optimal corner regularity of « with-
out splitting « into regular and singular parts at this corner. We define the set of exponents
&~ attached to the corner ¢~ inasimilar way as &* . We define fli as

ffzmiﬂ{RWy\fyG@t and Revy> —1}. (4.4)

The choice ¢ = & isthe best possible so that the corner expansion in (4.3) is empty.
There holds
u€ V() and we V- (7). (4.5)
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4.Cc EDGE EXPANSION UP TO THE CORNER

Relying on [14, Ch.17] we can expand « along the edge £ while taking its corner
regularity into account. Near ¢* the edge coefficientswill themselves bel ong to weighted
spaces of thetype 7¢(0, 1) onthehalf-edge {z € (0,1)} (here p* coincideswith 1—z2)

76(0,1) :={a € €>(0,1) | YmeN, (p")*""ka e L>(0,1)},

and near ¢~ the coefficients will belong to aspace 7¢(—1,0) where the weight function
is p~(z) =1+ z instead of p*.

Theorem 4.2 Let > 0 be given. Then for any a € 2 such that Rea € (0,n)
andany p = 1,...,p,, the coefficient a,, appearing in the splitting (4.1) belongs to
Ve+_rea(0,1) and there holds

u— Z ZX ) S™ [, p; aay) = regne”ﬂ+ (Q1), (4.6)

a, 0<Rea<n p

where x isasmooth cut-off function whichis 1 inaneighborhood of 0, r* = r*(x) is
defined in (4.2) and n = n(«) isthe smallest integer such that Rea+n > n. Smilarly,
Gap |y, bElONGStO 7 g, (—1,0) and there holds

u — Z ZX ) S™ [P Gap) =1 Uy, € Ve (7). 4.7

a, 0<Rea<n p

4.0 EXTRACTION OF EDGE COEFFICIENTS

Our main goal is the determination and the computation of the edge coefficients a,, , , at
least those corresponding to the smallest values of Re «v. These coefficients are defined
viathe expansion (4.1) and a sharp estimate of both the coefficients and the remainder is
given in Theorem 4.2. The method for extracting them is based on the use of the anti-
symmetric bilinear form J[R](u,v) defined in (3.14) where v ischosenas K"[3,p; b
for acertain range of 3 € 2 and of test edge coefficients b. The choice of the order n»
will determine the order of the error, which is a positive power of R . Weintroduce alast
technical hypothesis

(94) Vae, Rea >0, & —Rea¢gN, & —ReadN.
The main result of our work is the following

Theorem 4.3 Let u be the solution of problem (1.2) with a smooth right hand side f
which iszero in a neighborhood of the edge E . We assume the hypotheses (91) — (94) .
The function « admits the edge expansion (4.1) for all 6 > 0. Let 3 € 2 with Re 3 >
0. Wefixaninteger n > 0 such that

n>Ref—& —1 with & =min{&", &}, (4.8)
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where we recall that ¢ defined in (4.4) is attached to the corner ¢t and & isits
analogue for thecorner ¢~ . Let m beanmteger m > n andletfinally b € ™ (I) be
suchthat #?b(+1) =0 forall j =0,...,n — 1. Then there holds

J[R] (u, K™[8,p; b]) :/Iaﬂ,p(Z) b(2)dz + @ (RrtenmimmReBHL) o (4.9)

as R — 0, where

m=min{Rea|a €A and Rea > 0}. (4.10)

Before starting the proof, we give a corollary of identity (3.21). For this, we first
introduce the decomposition of the bilinear form J[R] according to the splitting (3.7) of
theradial traction 7" :

JO[R](u,U) ::/ (TOU-F—U-TOE) R_ldaz// (Tou-ﬁ—u-TOE) ‘T:R dfdz
T'n 1Jo
and

J'[R](u,v) ::/F (Tlu-@—me)da:/I/o (Tyw-v—u-Ty0)| _, RdOdz.

Lemmadd Let o, 5 €2A. Let m € N andinteggars 0 <n <m, 0 < k <m. Let
b e ™) such that (1) =0 foral j =0,...,n—1. Let a € 7(0,1). If
E+n—k+1>0 then

> JIR](&la (e, q] 020 W[5, p])
jHl=k
+ Z JR](0la®;[c, q] , 050 (B, p]) = bro agépq/ )b(z) dz.
Jj+Hl=k—1

This Lemma is merely a consequence of identity (3.21). Indeed, the assumptions
about ¢ and b ensurethat (i) all integralsin z are convergent, (ii) integrations by parts
in z (to have al derivatives on b) do not produce any boundary contribution. Therefore
we can separate the integralsover 7 and (0,w) likein (3.19). Theintegrals over (0, w)
are zero (or 1) thanksto (3.21), which correspondingly yields the Lemma.

PROOF OF Theorem 4.3. Relying on the decompositions (4.6)-(4.7) of «, we split the
integral J[R](u, K™[3,p; b]) into several pieces I, + I; + Iy + I + I, + I3 and
estimate each of them.

e Wefirstassumethat m >n + & —
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A) Wedefine I, as

L= Y OIRAL[COWE RN R ACRD)

a,q, k Jj+Hl=k
&1—Rea+n—k+1>0

Y TR @an, Bfo.q] 0D W) ).

jHl=k—1

where the coefficients a, , arethose of expansion (4.6). The assumptions of Lemma4.4
are fulfilled because

(@) Theinequality ¢, —Rea+n—k+1 > 0 impliesthat k < ¢, —Rea +n+ 1 which
is <n+& —n; sincewehaveassumedthat m > n+ & —n,then k£ <m.

(b) By Theorem 4.2, a,, belongsto the weighted space ”Vq_Rm(O, 1) inthe part of the
edgewhich belongsto Q* and similarly in Q~ , and thereforetheinequality &, —Rea+
n—k+1>0 istheassumption n+n —k+ 1 >0 of Lemma4.4.

Moreover, theassumption n > Re f—&;—1 impliesthat thetriple (a« = 5,q¢ = p,k = 0)
belongs to the sum defining [, . Therefore:

I = / a5(2) B(2) dz.

1

B) Wedefine ;" as

Il+ = Z < Z JO - 1)8 aaq [ 7Q] >aﬁb\];[€[67p])
a,q,k jHi=k
51"—Rea+n—k+1>0
+ Z J1 _1)6 aaq [ 7Q]’6fb\pg[ﬂ’p])>
jHl=k—1

Let us define 2+ as 1 — z. The domain of integration of the terms in I is T'g N
supp(x(r*) — 1) andiscontained in aset of the form

{xeR’|r=R, € (0,w), 2zt €(0,cR)},

where ¢ isapositive constant.

Eachtermin I}t can be estimated by a product of three terms:

(i) anintegral in z* over (0,cR) of afunction depending on z* but noton R nor 6,
(i) anintegral in 6 over (0,w) of afunction dependingon 6 butnot R noron =",
(iii) apower of R corresponding to therestriction on I'; of apower of r.

(i) Theintegral over (0,cR) is [I(z*)&Reatn—k g+ whichis ¢/(ReH-Reatnh+)
since {; —Rea+n—k+1>0.

(i) Theintegral over (0,w) doesnot dependon R.

(iii) The power of R is RRea—ReS+k
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Therefore
Iii— _ ﬁ <R§i+n—ReB+1> .

The corresponding part /; in the neighborhood of ¢~ hasasimilar bound.
C) Wedefine I as

I = 3 (D BRI (") Dty sl q] 06,8, p))

a7 q7j7£ j+£ k
&M —Rea+n—j—£+1<0
{<m, Re a+j<n+§i~'+1

)0 THRI() o, 5la.g] 0D WA[5.0])).

jHl=k—1

where J? and J} arethe contributionsover QO of J° and J*.

Likefor It ,eachtermof I can beestimated by the product of three terms (i)-(iii). The
only differenceisthat theintegral (i) in z* isover (cR,1) instead of (0,cR) andisequal
to [ (zF)&Reatn=k g2+ whichisstill ¢ (R -Rea+n=k+1) gnce €1 —Rea+n—k+1
IS < 0. The power (iii) of R isthe same, thus we obtain like above that

I2+ — 0 <Rfi+n—ReB+1> .

D) Weset n:=n+ & + 1. We check that

L+ I+ 17 + I +1; = > J[RI(X(rT) &ae, e, gl , K™[B,p; b]).
Reaa—(&}-jj<n
But according to Theorem 4.2
Uy 7= U — Z X(r) dag,, ®5a,q] € ”V$1+777(Q+)
a,q,]j

Rea+j<n

and similarly for the other corner. Therefore it remainsto estimate

Uy » K305 1))
9y, for ¢ = 0,...,m. Since

I := J[R](uj,

and more precisely, each contribution J[R](u,}
belongsto 7, (Q2F),

Ureg >
reg n

Uregn =0 <( ) +(r+)n> =0 ((p+)£ffn r”) and vuregn Vi ((p+)£1+*77 Tn—l) .
For the bounding of J[R](ut,, 0 ¥,) , we split the integral over T'x into (a) the

contribution on 2z € (0, R), and (b) the contribution on 2™ € (R, 1) and we estimate
each piece by a product of three terms as we did before.
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(@ When z* € (0,R), the distance p*™ isequivalent to R on T'z. Therefore the
weight over uj,, is equivaent to RS in that region. The part (i) is the integral
fOH(,z*)”*’Z dzt = 0(R""*') and the power (iii) of R is RET—ReB+ Their product is
RnHET —Re S+

(b) When =t € (R, 1), the distance p*™ isequivalent to z* on T'p. Therefore the
weight over v, , isequivalent to (z+)51+_’7 r" inthat region. The part (i) is the integral
f;(ﬁ)’ff*”*”*Z dzt = ﬁ’(Rﬁt”*"*"“) (since & —n+n—£¢+1 < 0) and the power

(iii) of R is R"ReA+¢ The product of both is RS Tn+1-Red

Gathering all the previous results of parts A) - D), we obtain formula (4.9) in the case
m>n+& —n.

e When m < n+ & — ny, wefollow the same lines with the corresponding changes:
For I, we reduce the sum by the extra condition that £ < m, and the same for Ili.
The conclusions are still the same. For I the sum is augmented by the set of (a, ¢, j, /)
suchthat & —Rea+n—j—/¢+1>0 and j + ¢ > m. The new terms do not satisfy
the same estimates as the old ones since the corresponding contribution (i) in z* isnow
0 (1) . Asthe power (iii) of R isdtill RRea—ReS+i+t we obtain that

I = min {ﬁ(R5i+"—Reﬂ+1), G (RReaTes+i+0) }

where the min is taken over (o, j,¢) suchthat & — Rea+n—j5—/(+1 > 0 and
j+4¢>m.Theminimumof Rea + j + /¢ isattanedfor a =g, and j+/=m+ 1.
Whence

Ier: ﬁ(Rﬂl*ReﬁerJrl)_

We have proved formula (4.9) inthecase m < n+ & — ;. [

Remark 4.5

(i) Formula (4.9) is, of course, still vaid if hypotheses (9,) — ($4) are only assumed to
hold for the exponents which are used in the proof, namely Reg <n=n+& + 1 for
(91) = (92), (H4) ad Rey = & for (93) -

(i) If we discard hypotheses ($)3) and ($),), we can still prove aformulalike (4.9), up
to the possible multiplication of the remainder by |log™ R| for someinteger M .

(iii) We still obtain formula (4.9) if we relax the assumption on the right hand side so that
f 1s no more supposed to be zero in the neighborhood of the edge, but only flat up to
a specified order, in relation with what is needed in the proof of (4.9): it sufficesthat f
belongs to the weighted spaces 7¢, 5 ,—2(21) and 7¢, 5 ,—2(27), with & definedin
(4.8)and n = n+ & + 1. Then the edge expansion up to the corner (4.6) still holds with
such aright hand side, which makes part D) the proof of (4.9) still valid. [ |
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Remark 4.6 The assumptions about the test edge coefficients b can be slightly relaxed.

(i) Instead of the boundary conditions 9’b(=1) = 0 forany j =0,...,n — 1, we may
assume that (1 — 2)™"%(z + 1)"""@ib € L>(I) for j < m, and the statement of
Theorem 4.3 can be extended to non integer n .

(i) We may assume that b isonly ™ 1(I) globaly, and piecewise ™ on a finite
partition of 1. =

5 A WIDER RANGE OF APPLICATIONS FOR QUASIDUAL METHODS

We extend the results of Theorem 4.3 to any edge of ageneral polyhedron and discuss
the case of cracks (where w = 27). We also evaluate the limitation of the convergence
ratein R when the right hand side is not flat along the edge.

5A THE DOMAIN

By a dlight modification we can adapt our method to the determination of edge singular-
ities along any edge of a three-dimensional polyhedron, that is a domain §2 with plane
faces and, therefore, straight edges.

Let £ beanedgeof Q. E isan open segment whose end points ¢* and ¢~ are
cornersof 2. We choose cylindrical coordinates (r, 6, z) adaptedto 2 around F :

E = {XN(T,Q,z)\ r=0,z¢e (—%,%)},
where h isthelength of £ . There exists aconical neighborhood ) © of E such that
QNo = {XN (r,0,z) | m=1(0,1), we (0,w), z € (—%,%)} N o,

where w isthe opening of €2 alongtheedge F .
We still define, for any R < 1, theinterna cylinder 'y as

I'r= {XN (r,0,2) | r=R, we (0,w), z € (_%7@}

But it may happen that even for small R, I'r isnotincluded in §2. Then we define the
reduced internal cylinder I' as

fR:{XN(r,0,2)| r=R, we (0,w), ze(—%—f—kJR,@—k‘R)},

2

() In cylindrical coordinates, © hastheform
0= {XN (r,0,z) | r=(0,Rp), w € (O,w), z € (—% +kr,% — kr)},

witha k>0 and Ry > 0.
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\yhere k > 0 defines the conical neighborhood © . In other words, for any R < Ry,
I'n=TrNO.

On the same model as (3.14), we define

h_kR

J[R)(u,v) = /1* (Tu-v—u-T7) do = /OW(TU-E—MTE) |T:R RdAdz. (5.1)

2
h
~LykR

Then defining the sets &* of corner exponentsat ¢ like before, but now on the polyhe-
dral cones K+ coinciding with  in neighborhoods of c¢*, and defining gf in the same
way, we have expansions (?) (4.6)-(4.7), and there holds with the same assumptions as in
Theorem 4.3

N>

JIR) (u, K™[5,p: b)) = / 45, (2)B(z) dz + O (RMnbeH&mim—Ressl)  (52)

NI

The proof follows exactly the same steps as the proof of (4.9). The parts I, 11i and 12i
are still defined by integralsover I'z . We only modify part D), noting that, thanks to the
condition on the support of x , the expansion (4.6) now gives

JIR)(u, K™([8,p;b]) = J[R] (g, K™ [8,030) + I+ I + I} + I + I

reg,n’

The conclusion follows by the same arguments as before.

5B |INTHE PRESENCE OF CRACKS

We now consider the case where the opening w is equal to 27 . This means that the
model domain 2 is the cylinder of radius 1 with an internal boundary formed by the
plane rectangle

Y={xeR*|z€(0,1),y=0, z€I}.

This caseisin principle included in our analysis. But the special situation of the singu-
larity exponents prevents hypothesis (£)2) to be satisfied: By the result of [10], the set
of singular exponents isincluded in the set of half-integers and moreover

Vj €N, dimkerMy(3+j) =N, (5.3
where we recall that N isthe size of the system L . But our method can still be applied

inthis casel We are going to explain why.

The first place where we use (),) is for the definition of the shadow singularities
®;[a, p] . The general theory givesthat @[, p| can be found in the form of afinite sum

(2) With the cut-off function x chosen so that in the cylinder » < Ry, the support of x — x(r*) is
contained in the conical neighborhood © . The subdomains 2 and 2~ correspond totheregions z > 0
and z < 0 respectively.
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of the form 7 >~ log?r ¢, ,() . But in this situation of cracks, it is proved in [11] that
the logarithmic terms are absent. But still, the solution of (2.8), though existing, is not
unique. This circumstance will help in the second place where we use ($,) .

We used ($)2) to prove (3.21), in particular that Hy[o,p;3,q] =0 foral « and g
in 2A when k£ #£0.

Lemma5.1 Forall jeN, p=1,...,N and j > 1 let thesingularities ®,[% + j, p]
and their shadows @[3 + j,p| be fixed. The dual singularities Wo[1 + 7, ¢] are till
determined according to Lemma 3.2 and there exists a choice of the shadows ¥, [ + 7, q]
such that there holds, cf (3.20) and (3.21),

Vj, Le€N, Vp,g<N, Vk>0, Hpt+jp;3+0q=0. (5.4

PROOF. By the proof of Proposition 3.4, we know that for any choice of the ¥,[3, ¢,
the identity Hy[o,p;[3,q] = 0 holdsassoonas a — 5+ k # 0, i.e. in our case, when
1+j—4—0+k+#0.Thusit remainsto prove (5.4) when j — (+ k =0.

Let ¢ and ¢ befixed. The proof usesinductionover k. For k =1, j = ¢ —1. Let
us fix a particular solution zﬁl[é + 0, q] of (3.12). Any solution of (3.12) is the sum of
U3 + £, q) and of an element of ker Mo(—L — £ + 1) = ker My(—% — ). A basisof
this kernel is the set of (2 + j,p], »' = 1,...,N. Therefore H[1 + j,p;1 + 0, ]
is the sum of afixed contribution and of alinear combination of the contributions of the
Yol3 +J,p],i.e of Ho[s+j,p;3+7,p]. By Lemma3.2, we can determine elements
of the kernel ker Mo(—1 — j) sothat Hi[t +j,p;2+0,¢/=0foradl p=1,...,N.

For ageneral k, weassumethat the U,[1 + 7, q] are determined for ¢ < k and haveto
prove (5.4) for ;7 = ¢ — k. We isolate the contribution ;7 = 0, ¢ = k in H; and the
proof issimilar tothecase k = 1. [

5.c THE RIGHT HAND SIDE

L et us consider now a standard smooth right hand side f € ¥>°(Q) . Then f belongsto
the weighted spaces 7(,0(2") and 75,(Q27) . With

& =min{¢, 2} and & =min{{, 2}, (55
there holds, for n = 2:

fe %372,1772(Q+) and f¢€ Vg (7). (5.6)

0 —2,n—2

Thus a general smooth interior right hand side alters the asymptotics of the solution only
in the region of exponents Rea > 2 and Re~y > 2. The corresponding parts in the
asymptotics of « (either polynomial or singular) are no more orthogonal in the sense of
the bilinear form J[R| versus the standard singularities associated with a zero (or flat)
right hand side.
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In connection with Remark 4.5 (iii), we see that in order to take (5.6) into account,
we first have to replace & by & := min{&;, &, } in the statement of Theorem 4.3 and
investigate the consequences on the estimates of the limitation n = 2.

We assumethat m > n-+¢&,—n; . Wedo changesin the general proof of Theorem 4.3
in the same spirit as at the end of this proof: For I, we reduce the sum by the extra
condition that Re 3 + k < 2, and the same for ]f . Thuswe need that Re o < 2 so that
the triple (6 = a,q = p,k = 0) belongs to the sum defining I, . The conclusions are
still the same.

For I the sum is augmented by the set of (3,q,7,¢) suchthat £ — Ref3 +n —
j—¢+1>0and Ref+j+ ¢ > 2. Thenew termsdo not satisfy the same estimates as
the old ones since the corresponding contribution (i) in z* isnow ¢ (1) . Asthe power
(iii) of R isdtill RReS-Reati+l 'we obtain

]2+ = min {ﬁ(Rf}r'm_ReO‘“)7 Vi (RRe,ﬁ’—Rea+j+£) }7

where the min is taken over (3,7,¢) suchthat & — Ref+n—j—/¢+1 > 0 and
ReB+j+0=>2.

We have also to consider 73 anew with the constraint that n» = 2. The part (a) of
the estimate is the same, but concerning part (b), we have now to deal with the possibility
that {§ —n+n+1=¢ —2+n+1 maybe > 0. Inthiscase the contribution (i) is
¢'(1) and the contribution (iii) is R7Rea = p2-Rea

Let Q[R](u, K™[c, p; b]) betheremainder J[R](u, K™[a, p;b])— [} aap(2) b(2) dz.
Theorem 5.2 Let u be the solution of problem (1.2) with a smooth right hand side f €

€ (£2) . We assume the hypotheses (£);) — ($4) . Let a € 2 with Rea € (0,2). We
fixaninteger n > 0 such that

n>Rea—§& — 1. (5.7)

Let m be aninteger m > n and b € €™ (I) be such that 9’b(+1) = 0 for all
j=0,...,n—1.Thenthere holds

Q[R](u, K™, p; b]) = ¢ (Rmnthntenmimj—Reatly (5.8)
Remark 5.3 If f iszero onthe edge F, then f belongsto ¥;,(2") and the above

statement can be improved by replacing everywhere 2 by 3, including in the definition
(5.5) of &, and we obtain the following estimate for the remainder

Q[R] (U,, Km[a’p; bD — O (Rmin{Z,n+§1,m—&-m}—Rea—&—l) ) (59)

26



5.0 OTHER BOUNDARY CONDITIONS

Inasimilar way asdescribed in detail for Dirichlet boundary conditions, we can treat other
self-adjoint boundary conditions such as Neumann conditions or mixed conditionsin sev-
eral forms, i.e. Dirichlet on certain faces and Neumann on the others, or of mixed type
for systems, where for example in elasticity some components of the displacement are
prescribed to 0 and the complementing components of the traction are also prescribed.

We may also consider transmission conditions, based on a coercive bilinear form B
with piecewise constant coefficients.

Once the correct Méellin symbols 91, and £* are defined, we consider their respec-
tive spectra 24 and &* and everything works in the same way, mutatis mutandis. But
we have to emphasize that the sets of exponents 21 and & may systematically contain
(small) integers. For example, if we consider a Neumann problem, 0 always belongs
to 2 and &*, which impliesthat «; = 0 (and, in general, & = 0), though this zero
exponent corresponds to a“singular function” &, which is constant.

Also the consideration of non zero boundary data in the neighborhood of the edge
would introduce more perturbation in the orthogonality relations between the asymptotics
of the solution and the standard singul arities associated with a zero right hand side.

6 OTHER METHODS AND FORMULAS, A COMPARISON

Inspired by [26] and [20] we can provide other families of formulae for the determi-
nation of the edge coefficients. We present them and then compare them with each other.
All of them are valid in the extended framework of polyhedral domainsasin §5.A.

6.A POINTWISE DUAL FORMULAS

Adapting [26] we find the formula, valid for any solution « of (1.2) with smooth Lu =
f, sufficiently flat near the edge E : For eachfixed z, € I :

Ao p(20) = /QLu K. [a,p] de dy dz. (6.1)

The 3D dual function (z,y, 2) — K[, p|(z,y, 2) isdefined as
KZO [057]7] = \Iji(?[OQP} - XZo[avp]

where

1. U¥P|a, p] isadual 3D “corner” singularity at (0,0, z) considered as the vertex
of acone: With p, the distance to the point (0,0, z,), and ¥, the corresponding
spherical coordinates, W2"[a, p] hasthe form

W2 [, pl(po, Vo) = py '~ o, p] (Vo)
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and satisfies on the infinite wedge W; coinciding with € in the conical neighbor-

hood ©:
{L\IIE?[a,p] = 0 in Wi,

UPla,p] = 0 on W
It does not belongto H* in any neighborhood of z, dueto itsstrong singularity in
po . The spherical pattern +» depends only on the wedge 1/; and the operator

L, but not on the particular point z, since we have supposed that the operator has
constant coefficients.

2. X, |a,p] isthecorrectionin H'(G), solution of

{szo[a,p] =0 in Q, 62)

Xooloypl = ©a,pl|,, on 99.

Note that X, strongly depends on z,, because the trace of W2P[«, p] on 9%
dependson zj .

6.8 GLOBAL DUAL FORMULAS

In the same spirit as formulas (6.1)-(6.2), we can also obtain exact formulas for moments
of the coefficients: For test functions b € 45°(1) (or moregenerally b asin Theorem 4.3
with n large enough)

1
/ Ao p(2) b(2) dz = / Lu - Ky[o, p] dzdy dz. (6.3
-1 0
Here K,la,p| = K™[a,p;b] — Xp|a, p] where K™[a, p;b] is defined in (3.11) with
m > Rea — 1 (i.e. sothat LK™[a, p;b] belongsto H~1(Q), see (3.13)) and X[, p]
isthe correctionin H'(G), solution of

{LXb[a,p] = LK™[a,p;b] in O (6.4)

Xpla,p] = Km[aap;bHaQ on 9.

Compare with [20], wherethe case L = A with m = 0 isconsidered.
An alternative to (6.3) in the spirit of [15] isthe following mixed formula

1
/ Aap(2) b(2) dz = / Lu-xK™a,p;b] —u- L(xK™[a,p; b)) dzdydz.  (6.5)
-1 Q

Here the cut-off x can be taken as in the expansions (4.6)-(4.7), i.e. x(x) = x(r™) in
OF and x(x) = x(r7) in Q. Simpler cut-off can be used if 2 contains a cylinder of
theform {x, r <1y, 0 <0 <w, z € I}:then x = x(r) with x(r) =1 for r < ry/2
and =0 for r > rg.
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6.c COMPARISON

Formula (6.1) yields exact pointwise values for the edge coefficient, provided the right
hand side is smooth enough to ensure the continuity of the coefficient and flat enough to
cancel any Taylor part of degree < Re« inthe solution w . This formula makes use of
the right hand side only and does not need the computation of « . But its main drawback
isits own computation. The determination of the dual spherical pattern [, p] isseldom
explicit and difficult in general: In addition to the Laplace operator, thisis only done for
the Lamé system under Neumann boundary conditions for a crack situation (w = 2),
see [30]. Moreover the solution of the three-dimensional problem (6.2) is necessary for
each value of z, where we want to have the value of the coefficient a,, . Findly, the
application of formula (6.1) requires the computation of avolume integral.

Formula (6.3) yields exact evaluation of the moment of the coefficient against the test
function. It has the following advantages over (6.1): The continuity of the coefficientsis
no more necessary; The basic function K™[«, p;b] is easier to determine (1D problems
on (0,w)) and lesssingular than 3" . But it still requiresto solve as many 3D problems
(6.4) as values of test functions b.

Formula (6.5) is closer to the idea of the quasi-dual formulas, since it does no more
require to solve 3D problems for the determination of the dua functionals, but requires
the knowledge of the solution « . Still (6.5) isavolumeintegral and the determination of
the cut-off terms Y K™ [« p; b] and L(xK™|a, p;b]) isnot obvious.

The quasi-dual formulas (4.9) and (5.2) need the determination of the same basic
functions K™ [«, p; b] and the computation of the solution « itself, but no other 3D solu-
tion. It requires only one (or afew) surface integrals, away from the edge where the func-
tions K™|[c, p; b] are the most singular. Each determination of J[R](u, K™[3,p; b])
does not provide the exact value of the moment of a,, against b, but its value modulo
a (known) power of R, which alows a Richardson extrapolation of the limit from the
computation of J[R)| (u, K™[B,p; b]) for 3valuesof R.

The works [34] in two dimensions and [36] in three dimensions also introduce an
extraction method based on integration over a circular arc of radius R, followed by
Richardson extrapolation in k. They are successfully implemented in an engineering
stress analysis code. In a certain sense, they are precursory to our present method, with
the following important distinction: In these two references the antisymmetric duality
pairing J[R] isreplaced by asimple scalar product only involving the angular part of the
singular functions. This possibility only exists for the Laplace operator due to its natural
separation of variables, see [36], and for the Lamé equations in 2D, see [34]. In order
to reach a wide generality, we are led to deal with the universal duality pairing J[R].
On the other hand, the extraction done in [36] yields pointwise values of the coefficients.
Extracting moments is more suitable to the regularity properties of the edge coefficients
near corners, and to the approximation by finite elements.
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