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Abstract

The asymptotics of solutions to scalar second order allippundary value problems in
three-dimensional polyhedral domains in the vicinity ofedye is provided in an explicit
form. It involves a family of eigen-functions with their sth@wvs, and the associated edge
flux intensity functions (EFIFs), which are functions alahg edges. Utilizing the explicit
structure of the solution in the vicinity of the edge we presenew method for the extraction
of the EFIFs calledjuasidual function methodt can be interpreted as an extension of the dual
function contour integral method in 2-D domains, and ineslthe computation of a surface
integral J[R] along a cylindrical surface of radiuR away from the edge as presented in a
general framework in [8]. The surface integrd|R] utilizes special constructed extraction
polynomials together with the dual eigen-functions foragting EFIFs.

This accurate and efficient method provides a polynomial@pmation of the EFIF
along the edge whose order is adaptively increased so tmeppate the exact EFIF. It is
implemented as a post-solution operation in conjunctiaih Wie p -version finite element
method. Numerical realization of some of the anticipateapprties of the J[R] are pro-
vided, and it is used for extracting EFIFs associated wiffedint scalar elliptic equations
in 3-D domains, including domains having edge and verteguarities. The numerical ex-
amples demonstrate the efficiency, robustness and highaagcaf the proposed quasi-dual
function method, hence its potential extension to elagtimioblems.

1. Introduction.

l.a The framework

The solutions of elliptic boundary value problems, for epdarthose arising in heat transfer and
elasticity, when posed and solved in non-smooth domaiegiitygons and polyhedra, have non-
smooth parts. These are described in terms of special sinfyuictions depending on the geome-
try and the differential operators on one hand, and of unknowefficients depending on the given
right hand side and boundary conditions on the other hand.

Concerning the singular functions, they are extensiveleed in the literature. In many cases
like corners in two dimensions or edges in three dimensithrey, can be written analytically (see
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for example [12, 3]) or semi-analytically [7]. In other cadi&e polyhedral corners, there exist
well-known numerical methods for their computation (seesfample [2, 17]).

Scalar elliptic boundary value problems in three-dimemgicdomains (as the heat transfer
problem in engineering practice), contain singular sohgialong each of the domairesiges
Each such singularity along an edde is characterized:

e by anexponenta which belongs to a discrete s¢tv;, i € N} of eigen-values depending

only on the geometry and the operator, and which determhreetetvel of non-smoothness
of the singularity. Anyeigen-valuec; is computed by solving a 2-D problem.

e by aneigen—functiongoga)(e) which depends on the geometry of the domain and the oper-
ator. These eigen-functions are computed by solving a s&tdproblems.

e by afunctionalong the edgeF , denoted byA() (z3) (3 is acoordinate along the edge)
and called “Edge Flux Intensity Function” (EFIF) which deténes the “amount of energy”
residing in each singularity.

The complete expansion of the solution in the vicinity of @lge is described in [8] as a com-
bination of eigen-functions and their “shadows”. Thesedskgs are new functions appearing in
3-D domains, having no counterparts in 2-D domains as fapasljeneous operators with con-
stant coefficients are concerned. There exists also a segwérdual eigen-functions and their
dual shadows. Their explicit knowledge is required in ouasitdual function method for the
computation of the EFIFs.

From the engineering perspective the EFIESY (z3) when o < 1 are of major importance
because these are correlated to failure initiation. In n&tuationsa < 1 when the opening at
the edge is non-convex. For examplecan be equal tc% in the presence of cracks.

This work is motivated by the need to compute generalizegsstmtensity functions along
edges for elasticity problems in 3-D domains. These aregpiifitant engineering importance in
cracked and V-notched structures, in which the stresssittefunctions may (and often do) vary
along the crack front. Present methods for extracting ettgsssintensity functions (ESIFs) in
cracked 3-D domains, as the J-integral [5, 14, 16] for examgnle limited to plane-strain/stress
assumptions, provide the point-wise value of the ESIF awvargpoint along the edge, and re-
quire the computation of an area integral containing thgwar point (thus may include large
errors when used in conjunction with numerical methodsjtifeumore, the point-wise path-area-
independent J-integral in 3-D domains is not exactly reléde¢he mode-1, Il and Il stress intensity
functions when these vary along the edge. Other methodbea®-tand H-integrals [15], suffer
from the same difficulties as these mentioned above.

Our method as initiated in [8], uses analytic forms of thengsiptic expansion of the dis-
placements and stresses in the vicinity of an edge, andds eaan algorithm for computing the
ESIFs (provided as functionalong the edge and not only pointwise values). In order tde@xp
the ideas of the implementation of the method and to tesffitsency, we first consider general
scalar second order elliptic problems, homogeneous witistent coefficients. These are simpler
elliptic problems that allow more transparent analytic patations, although they invoke all nec-
essary characteristics of the elasticity system. Thus;hbeacteristics of the solution can be more
easily addressed and the new method for computing the EBHseedemonstrated. The next step
will be the computation of ESIFs in isotropic elasticity ptems.

1.b The method

Using the eigen-functions and their shadows, a new funatidiiR] is introduced (following [8]),
which can be viewed as an extension of the 2-D contour int€geg e.g. [4]) to 3-D domains.
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This new functional, which is a surface integral along arailical surface, enables us to present
the edge flux intensity function explicitly as a functionef (the coordinate along the edge). The
method presented is implemented as a post-processingrstep iversion finite element code
and the numerical performance is documented on severalmagumoblems. Using the/[R]
functional, and newly constructed extraction polynomiale extract the EFIFs in the vicinity of
any edge (including crack front) in any polyhedron. Thismoetis easily extendable to problems
of 3-D elasticity and is the first method poovide the functional representation of the EFIFs along
x3 (as opposed to other methods providing pointwise valueleEtFIFs along the edge) and is
very accurate, efficient and robust. Most importanifye method is adaptiveroviding a better
polynomial representation of the EFIF as the special hiereal family of extraction polynomials
is increased. Cases where the EFIF has very large gradiedta/zere edges approach vertices
are considered, and we show the method’s robustness andexdor these cases as well.

This paper is organized as follows:

e \We start with notations, defining the domain of interest dradifferent elliptic operators
we consider.

e We describe the asymptotic expansion of the solution in #ighitborhood of an edge in
terms of eigen-functions, their shadows, and the struatfitbe EFIFs. The dual eigen-
functions, and their shadows, which are associated witlptimeal eigen-functions are ad-
dressed as well.

e The J[R] integral is then introduced, and the main theorem for efitrgahe EFIFs is
quoted (the proof can be found in [8]). This integral regsiittee construction of extracting
polynomials, denoted byB(x3) , and the data on a surface of a cylinder of radig@swith
the edge as its axis. A short explanation on its applicationonjunction with the finite
element method is given. We then describe the various prablghosen as test cases for
our computations (for which we provide in Appendices A anchB éxplicit formulas for
the eigen-functions, duals and shadows). Numerical exmatiations are performed to
demonstrate that the computet|R] s indeed provide the anticipated trends expected by
the theorem.

e Subsequently, a hierarchical family of extraction polytf@miis constructed. The hierarchi-
cal family of extraction polynomials is used in many numakigsts to extract the EFIFs.

o Finally, we present two numerical examples where the EFfHdnrge gradients, and where
the edge approaches a vertex. These examples demonstratdtistness of the method in
handling realistic geometries in engineering practice.

2. The Model Domain and the Scalar Elliptic Problem.

As a model, we choose a domailh such that only one straight edge is present. The domain is
generated as the produtt = G x I where I is the interval[—1, 1], and G is a plane bounded
sector of openingw € (0,27] and radiusl (the case of a cracky = 27, is included), as shown
in Figure 1. Although any radius or intervdl can be chosen, these simplified numbers have been
chosen for simplicity of presentation. $. we consider a less elementary example.

The variables inG and I are (z1,x2) and x3 respectively, and the coordinatés;, o, z3)
are denoted byr . Let (r,6) be the polar coordinates centered at the vertexGoko that G
coincides with {(z1,72) € R? | » € (0,1), § € (0,w)}. Theedge E of interest is the set



Figure 1. Model domain of interesf) .

{x € R3 | r =0, x3 € I} . The two flat planes that intersect at the edgeare denoted byl";
andT'y. Forany R, 0 < R < 1, the cylindrical surfacd 'y is defined as follows:

Tpi={zeR’|r=R, 0€(Ow), x3€ I} (2.2)

Remark 2.1 The methods presented in the paper are restricted to ge@sethere the edges are
straight lines and the anglev is fixed alongzxs .

The considered operator is an elliptic second order patiitdrential operatorZ with con-
stant real coefficientgk;;) of the form:

L=y

=13

k:z-jai@j with 81 = =, 82 =

3 0 4 0 40
— 81‘1 81‘27 3_81‘37

1

where k;; = k;; form a symmetric matrix3 x 3 (for heat transfer problems these represent the

heat conduction coefficients). Thig; 's have to satisfy the ellipticity condition, and withousk

of generality k33 is set askss = 1. Denoting the solution byr(x) , we consider the Dirichlet
problem on2

L(r) = 0 in Q

{ T = g on 09, (2:2)

where ¢ is the trace of a given function belonging t81(£2). We assume that the Dirichlet
boundary conditions are homogeneouslonand I's , i.e.:

g(r,0,z3) = g(r,w,z3) = 0. (2.3)

Note that all methods presented herein carry over to Neurnammxed homogenous boundary
conditions also.

For demonstration purposes three specific operators adevad: the Laplace operator,
ki; = d;; , a general operator witl; = 5,k = 4, k12 = —4 and ki3 = ka3 = 0 and a gen-
eral operator having also mixed derivatives in the direction with k11 = koo =1, k13 = —0.5
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and k12 = kog = 0. Two domains are considered as benchmark domains, namelpauing
w = 37 /2 and the other one is a cracked domains= 27 . Combining the two different domains
and three different operators we define five specific Casesdiog to Table 1.

Case#|| w The Operator
kit | koo | kss | ko | Kiz | kos

Casel| 3n/2 || 1 1110 0 0
Case?2|3n/2| 5| 4| 1 |-4| O 0
Case 3|| 2« 1 1 1 0 0 0
Case 4| 2« 5 4 1| -4 0 0
Case 5| 2« 1 1 1 0 |-05| 0

Table 1. Notation of the various Cases considered as model problems

3. The Singular Solutions in the Vicinity of the Edge.

The asymptotic representation of the exact solutiofior the problem (2.2) in the neighborhood
of the edgeFE relies on splitting the operatoL into three parts (see [13, 9, 6]):

L = My(0y,0) + My (81, 02)03 + M52, (3.1)

with M, a second order operatof/; a first order operator and/, a constant. This splitting
allows to consider forr an Ansatz of the form:

F= A(z3) (w1, 72), (32)
320

which should solve the homogeneous equatibfr) = 0 together with the lateral boundary
conditions 7(r, 0, z3) = 7(r,w,z3) = 0, cf (2.3). After inserting (3.2), the equatioh(7) = 0
becomes:

> O A(ws) Mo®; + > T Aws) My + Y 0 A(ws) Ma®; = 0 (3.3)
=0 J=0 720

and after rearranging:

A($3)M0<I>0 + 8§A(;1:3)(M0<I>1 + M1<I>0)—|—
+ ZagA(mg)(Moq)j + Ml(I)j_l + ng)j_g) =0. (3.4)

Jj=2

We want that equation (3.4) holds for any smooth functiéws) . Thus, the functionsd; have
to satisfy the three equations below:

My®Py =0
Mo® + M9y =0 (IL’l,IL’g) e (3.5)
My®; +M1®j_1 + Ma®;_5=0, j>2



accompanied by the homogeneous Dirichlet boundary comditon the two face$ = 0, w :
P®;(r,0) = ®(r,w) =0. (3.6)
The first partial differential equation in (3.5) with (3.6$solutions®, of the form
Do = rpo(0)

with « in a discrete sef{«;, i € N} of positive numbers. These solutions are refered to as the
two-dimensionaprimal singular functionsThey are nothing but the singular solutions associated
with the eigen-valuen of the boundary value problem generated over the 2-D dorain

The second PDE in (3.5) with homogeneous Dirichlet boundangitions (3.6) generates the
function ®; which depends onP, and is of the form®; = r**1p;(9) . Finally, the solutions
of the third equation of (3.5) with conditions (3.6) form thequenced; :

®; = r*Tp;(6). 3.7)

The ®;, j > 1, are called théshadow” functionsassociated with the leading functioh, . To
each valueo; of o corresponds a sequen¢@;) which we denote from now on by<I>§.ai)) :

() _ i+, (o) o
QT =r% e @) j=0,1,... (3.8)

Thus, for each eigen-value; and each coefficienti(*) (smooth enough) the 3-D function:

7= AL (wg) 1ot 10 (0) (3.9)
7>0
solves the homogeneous equatidriit) = 0 together with the lateral homogeneous Dirichlet
conditions. It can be shown that the overall solutiorof problem (2.2) can be expanded as:

7= Y A (zy) ro‘i”@g-ai)(@), as r— 0, (3.10)

i>1 5>0

where A(O‘i)(azg) is the Edge Flux Intensity Function (EFIF) associated with4" eigen-value.
Solutions of (3.5)-(3.6) associated with thegative eigen-valuegre called thelual singular

solutions and are denoted by . Since the operatot. is self-adjoint, for any«; the number

—a; is also an eigen-value and there exiﬁ@i) such thatr‘o‘iz/;(()o‘i)(e) solves the first equation

(i) .

of (3.5). For normalization reasons, we set, for some reefficent c,
Wit = (e pmaaglod g) (3.11)

where \I/éo‘i) is the dual leading eigen-solution and
ploe) = c{rpmaitipled g) (3.12)

are the shadow dual eigen-solutions. Computation of pramdl dual eigen-functions for Cases
1-4 is provided in Appendix A, and for Case 5 in Appendix B. Gtetical details and rigorous
mathematical formulation is provided in [8].

Remark 3.1 Operators for whichM; = 0 imply that the ®; and ¥; of odd rank are zero:

(1)541-) :\pg.o‘i) =0,j=1,305,...



4. The Extraction Method - The J[R] Integral.

For each eigen-valuey; , a set ofquasidualsingular functionsKT(,?i) [B,,] are constructed where
m is a natural integer called therder of the quasidual function, and3,,,(z3) is a function (we
choose it to be a polynomial) callextraction polynomial

K [Brn] € Y 04 Bn(a3) 047 (4.1)

Jj=0

=

By using the quasidual functions, one can extract a scatayot of A (x3) with B,,(x3) on
E . This is accomplished with the help of tlaati-symmetridooundary integralJ[R] , over the
surfaceI'r (2.1). We defineJ[R|(u,v) to be:

J[R](u,v) déf/F (Tu-v—u-Tv)dS:/I/Ow(Tu-v—u-Tv)\r:RRdexg 4.2)

where I = E (the edge) alonges axis (Figure 1). T is the radial Neumann trace operator
related to the operatoL :

kii k2 ki3 o\ " [cosb
T déf kgl k?gg k23 82 sinf | . (43)
k31 k32 1 03 0

With the above definition we have the following theorem [8]:
Theorem 4.1 Take By, (z3) such that
& Bp(z3) =0 for j=0,..,m—1 ondl (4.4)

then, if the EFIFsA(®) in the expansiori3.10)are smooth enough:
JIR)(r, K3 [Bu]) = / A€ (23) By (w3) das + O(RM 4™ as R — 0. (4.5)
I

Here o4 is the smallest of the eigen-values, i € N.

Theorem 4.1 allows a precise determinationfgm(ai)(xg) By, (x3) dzs by computing (4.4)
for two or three R values and using Richardson’s extrapolationfas- 0 .

Remark 4.2 For the first EFIF A(@1) | we obtain the highest convergence ra(tE(Rm“) .,
moreover, the®; and ¥; of odd rank are zero, cf Remark 3.1, there holds the following
provement of Theorem 4.1: For aeyeninteger m , condition(4.4) implies that the asymptotic
equality(4.5) holds modulo a remainder i¥(R™+2) instead of O(R™*1) .



4.a The quasidual extraction functions.

To confirm that the numerical examples provide the resutidipted by Theorem 4.1 we consider
the following options of the quasidual extraction funcgon

K = By(a) @™ (r,0)

K{*™ = By (3) 0™ (1,0) + 05 B1 (3) 91" (1, 0)

K5 = Bo(x3) W™ (1,0) + 05 Ba(23) W™ (r,0) + 83 Bo(23) U™ (r,0)

K" = By(a3)0) (r,0) + 03 B3(x3) U™ (r, 0) + 92 B3 (25) U5 (1, 0) + 08 B3 (25) U™ (1, 0)

According to Theorem 4.1, the difference between the ialedfR|(7, Kfﬁ”)[Bm]) and the
moment [; Al (z3) By, (x3) drz should be of the order oR™*!, which is the convergence
rate with respect taR . To obtain the “right” convergence rate, the following ciiwhs should be
satisfied for the extraction polynomial8, , B;, B> and Bs according to condition (4.4):

By : No condition required. (4.6)
Bi: Bi(+1)=Bi(-1)=0 4.7)
By : By(+1) = Ba(—1) = 03Ba(+1) = 03Ba(—1) =0 (4.8)
Bs: Bs(+1) = By(—1) = 83B3(+1) = 93B3(—1) = 93 B3(+1) = 93 B3(—1) = 0. (4.9)

Since By does not have to satisfy any condition, we chod3g(z3) = 1. We further choose
Bi(w3) = 23 — 1, Ba(z3) = (#3 — 1)? and Bs(z3) = (23 — 1)® which satisfy (4.7), (4.8) and
(4.9) respectively.

The exact solutionr being unknown in general, we use instead a finite elemenbajppation
rr and the integral (4.2) is performed numerically using a Giunsquadrature of ordet :

ng na
TR K8 [Bul) =33 2wy <T’7’FE K9 [B,] - 1pp TK,Q?H[Bm]) (4.10)
k=1 ¢=1 : EhosMe

where wy, are the weights and;, and r, are the abscissas of the Gaussian quadrature. The
Neumann trace operatol, , operates on both and Kr(,?i)[Bm] . For T'r we use the numerical
approximationsT7rg computed by finite elements. We extract in the post-solugibase of
the FE analysisreg , 0177, Oo7rE , and d37eg (NOte that such extractions are possible without
problems thanks to the -version of FEM) WhereaTKﬁr?i) [By,] is computed analytically. These
values are evaluated at the specific Gaussian points whemtégeal is computed numerically.

The numerical errors associated with the numerical inteEgraand with replacing the exact
solution by the finite element solution are negligible, asvai for one example problem in Ap-
pendix C.

4.b Analytical Solutions for Validating the J[R] Integral Method

We generate herein analytical solutions against which ounarical experimentations are com-
pared. The exact solution associated with théh eigen—pair,réfi) is:

7800 =57 9540 (23) 21 (1, 9) (4.11)

J=0



So if A(®)(z3) is a polynomial of orderN , i.e. A®)(x3) = ag + ajzs + - + ayzd then
(4.11) has a finite number of terms in the sum, becauseMhel and higher derivatives are zero.
Thus, (4.11) becomes:

N
7800 = 3" 9 A (25) 21 (1, 9). (4.12)
j=0
Recall that, by the mere construction of tklrgai) , there holdsL7" = 0. If we specify over
the entire boundary)2 the Dirichlet boundary conditiory as the trace of (4.12), the solutian
of problem (2.2) coincides with (4.12) at any pouat= (r, 6, z3) .

We coose two examples of boundary conditions, each haviriffesieaht N . The first BC,
which is denoted by(BC,) is the one for which we takeV = 2 and

Al (23) = 1 4 z3 4 22 (4.13)
i.e., ap = a1 = as = 1. This means that we prescribe the Dirichlet conditiondin :

(BCs) O] = (1 + 23+ 22)3 (1,0) + (1 + 225)2 (r,0) + 20 (r, 0).

oo

The second boundary condition which we consider isfoe= 4, is denoted by(BC,4) for which
we take
Al (23) = 5 + da3 + 922 4 323 + 4 (4.14)

i.e.ap =5, a1 =4, ay =9, a3 = 3 and ay = 1. This means that we have the Dirichlet
condition:

78 9g = (5 + das + 922 + 323 + 2d) " (r, 0)
+ (4 + 1825 + 923 + 4af) @ (r,0)
+ (18 + 1823 + 1222) B (r, 0)
+ (18 + 24a3) L (r, 0) + 240 (1, 0).

(BCy)

By the uniqueness of solutions, the solution of problem)(®i¢h the boundary conditioBC,)
and (BC,) coincides with7.¢*) for the choice (4.13) and (4.14) oh(®1) | respectively. This
means that our exact solution contains only one edge siriyufand no vertex singularities).

The domains have been discretized by using -£#EM mesh, with geometrical progression
towards the singular edge with a factor of 0.15, having 4rewpéelements. In the:s direction, a
uniform discretization using 5 elements has been adoprtefigure 2 we present the meshes used
for opening angles ofv = 37/2 and w = 27 (crack).

4.c Numerical Tests UsingKéo‘l) for Cases 1to 4

When using the quasidual functioh’o(o‘l) with any chosenBy(z3) , according to Theorem 4.1
the convergence of/[R] to J[0] should beO(R?) for Cases 1-4 (for whichd; = ¥; = 0,
cf Remark 4.2). We perform numerical tests for Cases 1-4 tatkiedoundary conditionBCs)
and computingJ[R] at different values ofR .

According to equation (4.5), we have:

J[0] = lim JLR](r, K6 [Bo]) = /IA(“i)<x3>Bo<x3>dx3 e (4.15)



¢/

A
Figure 2. The p -FEM models.
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With the fixed extraction polynomiaBy(z3) = 1, we find for A(z3) = 1+z3+2% and K((]O“) :

1
Jox :/ (1+;173—|—a:§) -ldxs = g
-1
We have computed/[R] according to formula (4.10) with 10 integration points foe quadrature
in both # and z3 directions and with the degreg = 6 in the finite element analysis. It was
found out that taking 32 integration points apd= 8 does not improve the results considerably.
We summarize the results in Table 2, and plot in Figuied J.x — J[R]) vis. log(R) , which

yields the numerical convergence rate.

Casel Case 2 Case 3 Case 4

R=0.9
R=0.8
R=0.7
R=0.6
R=05
R=04
R=0.3
R=02
R=0.1

0.544627
0.639754
0.724304
0.797786
0.859434
0.909614
0.949535
0.977493
0.994679

0.857214
0.886932
0.913497
0.936658
0.955926
0.971456
0.984096
0.992844
0.998349

0.393094
0.519466
0.632346
0.730629
0.812665
0.879250
0.932802
0.970071
0.993188

0.704199
0.764039
0.819377
0.868391
0.907785
0.939072
0.967113
0.983999
0.996935

Table 2. Values of J[R]/Jex for (BCz), using Kéal) and By(z3) =1.

It is easily visible in Figure 3 that the convergence rate &3 1-4 isO(R?) as expected
(on each graph the line of sloge passing through the first point of the graph has been plotted)

(a1)

4.d Numerical Tests usingK, "’ to K;go‘l) for Case 5

Taking Kéal) up to Kﬁf‘l) , where highestm is 3, and with extraction polynomiald3,,,(z3)
that satisfy (4.8), the convergence 8fR] to the exact value should b@(R™*!) for Case 5.
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Figure 3. Convergence rates of [R] for (BCy), with
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K
(23 — 1)
128/105

Kl
(23 — 1)
—64/63

R=0.9
R=0.8
R=0.7
R=0.6
R=05
R=04
R=0.3
R=0.2
R=01

0.452184
0.549460
0.638916
0.719399
0.789221
0.849224
0.901877
0.943800
0.977265

0.170991
0.334150
0.483345
0.616099
0.729563
0.823832
0.900601
0.955126
0.989361

1.066583
1.093614
1.094800
1.080202
1.057599
1.034622
1.017906
1.005847
1.001515

1.291903
1.161184
1.082724
1.038806
1.015371
1.004237
1.001634
1.000079
1.000680

Table 3. Values of J[R]/Jex , for Case 5 with(BCy) .

11
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and Bp =1.
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We have performed numerical tests taking the boundary tiondi{BCs), and computing
J[R] atdifferent values ofR with different choices of extraction polynomialB . We summarize
the results in Table 3, and pldbg(Jox — J[R]) Vis. log(R) in Figure 4.

The results forKO(al) can be compared with those for Cases 1 - 4 in Table 2 and Figure 3
We see the lower convergence rate due to the presence otapaéra , but this is dramatically
improved by passing to the higher order quasidual functiﬁ’r{%” to K?Eal) .

We can see in Figure 4 that the convergence raté|[é{] in Case 5 fork'" and B,, is at
least of orderR™*! as we expected.

5. EFIF Extraction using Jacobi Polynomials

5.a Polynomial and non-polynomial EFIF

We are interested in extracting the EFHE®?) (z3) . Because its functional representation is un-
known, its polynomial approximation is sought. We woulcelifo construct an adaptive class of
orthonormal polynomials with a given weight(z3) = (1 —22)™ so to represen,,,(z3) . This
suggests the use of Jacobi polynomials as a natural basiss kway, if A() (z3) is apolynomial

of degree N , it can be represented by a linear combination of Jacobinpohyals as:

AL (5) = o) + an ) (ws) + -+ + an ) (w3) (5.1)

where Jéf) is the Jacobi polynomial of degrele and orderm , i.e. associated with the weight

w(rz) = (1 — x3)™, which is denoted in literature b;P,gm’m) . There holds the following
important orthogonality property [1, pp. 773-774] :

1
[ 1= ) I (a3) da = Suuh (5.2)
-1

with some real coefficients:;, (depending orm ). The hierarchical family of extraction poly-
nomials, denoted b)Bquf)(l‘;;) , has to be chosen so to satis&]éf)(il) = agBJ,Sf)(il) =
coo= 9 BIW (£1) = 0.. To fulfil this, we set

BJY (w5) = (1 —af)™ ==

e (5.3)

so that, according to (5.2), we retrieve the coefficiemisin (5.1) as a simple scalar product:

1
/ AC)(23)BIK) (25)dog =@, k=0,1,...,N. (5.4)
1

Thus, by virtue of Theorem 4.1, thé[R] integral evaluated for the quasi-dual functiofs o) [Bn]
with the extraction polynomials3,,, = BJTSZf) , k=0,1,..., N provide approximations of the
coefficientsay, .

Of course, in generam(ai)(xg) is an unknown function and we wish to find a projection
of it into spaces of polynomials. It is expected that as weedase the polynomial space, the
approximation is better.
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The EFIF A(®)(z3) has an infinite Fourier expansion in the basig” with a sequence of
coefficentsay, :

A (zg) =3 " P (5.5)
k>0

converging in the weighted spadé’[w] with w = (1—x3)™ . For each fixedn , the computation
of the n + 1 coefficientsay, ..., a, provides the orthogonal projection oi(ai)(xg) into the
space of polynomials of degree up toin the weighted spacé.?[w] . To accomplish this we use

the n+ 1 extraction ponnomiaIsBJ,S?) (x3),. .. ,BJ,S?) (x3) defined in (5.3), so that there holds
according to (5.2):

1
/ A (23) BT (w3) dos =6 k=0,1,...,n. (5:6)
-1

If we want to increase the space in Whi(}ﬂ](ai)(xg) is projected, all which is needed is the
computation of (5.6) fork = n + 1. This way: A% (x3) = AP™VIOUS (33) + &, 1., 11 (x3) .

5.b Jacobi Extraction Polynomials of Order 2

Since they satisfy (4.8), and, a fortiori, (4.7) and (4.6 dacobi extraction ponnomialBJQ(k)

can be combined with the dual singular functiord®" | K}O‘i) and Kéo‘i) . There holds [1, pp.
773-774];

k
(k) B 1 (k+1+44)! N
T (ws) = k2 + Tk + 12 ; 20l (k — D12+ 1) (23 —1) ®.7)

and the constanky, in (5.2) is equal to

29(k+1)(k +2)

e = (2k +5)(k + 3)(k + 4) (5.8)
Inserting (5.8) and (5.7) in (5.3), we finally obtain:
B, . Ck+B)k+3)(k+4) (1—2D? &K (k+1+4)
BLws) = =m0 i D 2o T3 2 oD@ T D' 6.9)

=0

(a1

5.c Numerical results for (BCy4) using K, ) with Jacobi Extraction Polynomials

For the benchmark problem with boundary conditiofi3C4) for which the exact EFIF is the
polynomial (4.14) of degree 4 and using the extraction paiyials BJ2(0) (z3),... ,BJz(”) (x3),
where 0 < n < 4, we extract the EFIF for Case 2 & = 0.05: We have performed the
computation with15 integration points ancp = 8 in the finite element mesh, and present in
Figure 5 the relative error in percentage between the drtideFIF and the exact one. As may be
seen for the family of degre¢ we indeed fully recover the exact EFIF.

Of course, ifn > 4 we should fully recover the EFIF. As one increases the orfi¢he
hierarchical family, the results do not improve, but we ab&a oscillatory behavior of the solution
due to numerical errors (the finite element solution is natcéx with a very small amplitude as
demonstrated in Figure 6.
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To illustrate the convergence of the extracted values as@ib@n of R, we present in Table
4 the monomial coefficients of the extracted polynomialat= 0.9, 0.5, 0.2, 0.05. Then we use
Richardson’s extrapolation, knowing that the error bebaa® O(R*), cf Remark 4.2, and the
coefficients atR = 0.9, 0.5 to extrapolate t&R = 0. These extrapolation results are shown in
the last column of Table 4. The relative error in the extraped EFIF using the data & = 0.9,
0.5 is compared with that obtained & = 0.5 and 0.05 in Figure 7.

Extrapolated
Exact R=0.9 R=05 R=02 R =0.05 using

R=0.9,05
agp 5 5.920806968 5.089253508 5.005993235 5.000288235 5.001699446
ay 4 4.004545148 4.002303539 4.002751475 3.998527960 4.002067521
as 9 9.047407703 9.008253090 9.001724824 8.989161317 9.004130510
as 3 2.985298783 2.995871625 3.001625541 3.005167695 2.996984837
ay 1 0.904830390 0.983905020 1.007098452 1.025721321 0.992230769

Table 4. Computed coefficients; for (BCy), using Kz(o‘l) and BJQ(k) (x3), k<4.
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Figure 7. Relative error (%) of the extracted EFIF @& = 0.5, 0.05 and extrapolating from data
at R =0.9, 0.5. EFIF computed usinﬁéal) and the hierarchical faminBJz(k)(a;y,) k<4,

By extracting the EFIF from the FE solution away from the siag edge (where usually
the numerical data is polluted), we demonstrate that a veog gapproximation is obtained by
Richardson’s extrapolation, taking into consideratioat tthe error behaves a®@(R*). Practi-
cally, the relative error in the extrapolated EFIF is as migtd very close to the singular edge
(R = 0.05), and much better than the values obtained when extratiparformed atR = 0.5 .

6. A Polynomial Representation of a Non-Polynomial EFIF

We have demonstrated so far that the quasi-dual extract&had performs very well if the exact
EFIF is a polynomial. A natural question is - what if the EF$Fiot a polynomial? In this case
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we use the hierarchical algorithm for polynomial spacedamient described if5.a. Herein we
investigate the performance of such hierarchical spaderenent for the case where the exact
EFIF is a general function, and furthermore, it containdigcadients at the ends of the edge. For
example, consider Case 2, where the EFIF is a function ofcitma: f

sin xg
(d—a3)

Al (z3) = (6.1)

where d is a given number. Asi approaches 1, the EFIF approaches infinity at the vertices
x3 = £1. We chose three values af= 2,1.5,1.05 .
Consider the following problem:

{L<T> = BAD ()0 (r0)  in Q 6.2)

o= Al (z3)0 (1, 0) on 99,
for which the exact solution is simply., = A© (z5)®")(r,0) |

Remark 6.1 Theorem 4.1 does not apply stricto sensu to the solutionaiflem(6.2). Never-

theless it can be proved that[R](r, K\")[B]) yields an approximation of the moment df:)
modulo a positive power oR .

6.a Finite element approximation

A refined finite element model graded towargds = +£1 was generated as shown in Figure 8. It
has 25 elements in thes direction and a total of 800 solid finite elements.

Figure 8. The p -FEM model for non-polynomial EFIFs with large gradientsaf = +1.

To evaluate the accuracy of the extracted EFIFs, one hatofiegsmine the numerical results,
Trg and its derivatives, especially for solutions having laggadients. The graphs in Figure
9 present the relative error impg, and d,.7rg in percentage, extracted from the finite element
solution atp = 8 for d = 2,1.5,1.05. These graphs are along the lide = 0.05, 6 = 135°
and -1 <x3<1.
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The FE results have a relative error of about 3% fa0.8 < z3 < 0.8, and around 17% for
0.8 < |zg| < 1 for the case whenl = 1.05. This in turn will perturb the extraction of the EFIF
by that order of magnitude when using the quasi-dual extradechnique, as we show in the
sequel. We will also observe that the EFIFs are computedsinitiiar accuracy and the extraction
technique does not magnify the numerical error but the dmpokor d = 2, 1.5, the relative
error in the function and its derivatives is very small (Ié¢szn 0.7%) in all the range. Therefore,

the extraction of the EFIFs is expected to provide excellestlts.
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x3 € [—1,1] for the three problems defined k=2, 1.5 and 1.05.

6.b Extraction of EFIFs

Using Kéo‘l) and the hierarchical famil;BJék) (x3), we extract the EFIFs aiz = 0.05 using
the solution atp = 8 and 54 Gauss integration points (due to the strong gradiémite solutions
we used a higher integration scheme). We also checked wi@®e@#s integration points that the

integration error in evaluating/[R] is negligible.
Figure 10 presents the exact EFIF and the extracted EFIfg uémék)(xg), k < n, of
increasing ordern obtained atR = 0.05. Notice the different ordinate scales inside the three

18



graphs. One may easily observe the strong gradients of tHediFx; = +1, especially for the
case wherel = 1.05.

Relative errors between the extracted EFIF and the exauae\ate presented in Figure 11
(here, again, the ordinate scales are different from eduoér)t For all cases ofl, the EFIF is
progressively better approximated away from the largeigrasl (~ —0.85 < z3 < —0.85) as
the order of the extraction polynomials:) is increased.

At n = 19 the extracted EFIF has less than 3% relative error for thewagnd = 1.05 and
less than 0.5% relative error for the casés- 1.5 andd = 2.

The large pointwise errors in the close neighborhood of thk gradients is expected.

6.c Localized Extraction of EFIFs

In the vicinity of a vertex (the intersection of the edge wahother edge) it is a-priori known
that the EFIF may have large gradients approaching either, aginity or a constant value as
p — 0 (p denotes the distance to the vertex). A detailed explanaticihe decomposition of the
solution in the vicinity of the edge as it approaches a vertxbe found in [10]. The asymptotic
solution in the vicinity of the edge as presented in sectios tberefore irrelevant on the entire
edge I . It is expected therefore that better results can be olatadyeapproximating the EFIFs
by polynomials oran inner partof the edge, for example at < z3 < b where -1 < a,b < 1.
This localized extraction strategy is a slight modificatairthe J[R] integral, so that instead of
integrating along a cylinder having its axi& = [—1, 1], the integration is be performed along
a cylinder with the axis|a,b] . The modification is easily implemented by a transformatifn
variables.

The localized extraction strategy has been investigate@amse 2 for problem (6.2) with the
RHS as prescribed in by (6.1) anfl= 1.05, for which the exact EFIF is given by:

sin T3

A = -

(6.3)

Using K2(°‘1) and the hierarchical famil;BJQ(k)(mg) and the finite element model shown in
Figure 8, we extract the EFIFs at R=0.05 using the solutiop at 8 and 54 Gauss integration
points. The EFIFs are computed at three intervals on the edde< z3 <1, —0.8 < 3 < 0.8
and —0.6 < x3<0.6.

In Figure 12 we present the relative error in the extractetFEBing sz(k) (z3) of order 4,
11 and 15. As expected, when the selected interval for ERMaetion is reduced and confined in
a region away from the high gradients, a much better apprabtiom is obtained.
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7. A Domain with Vertices.

In order to examine the vertex influence on EFIF extractiorcargsider a more realistic domain
constructed as an extension of the one presented in Figuyeatiding two cylinders at-1 as
shown in Figure 13. The added cylinders &€& = D x I) and Q-1 = D x (-1 where
IM is the interval[1,1.5], I~ is the interval[~1.5, —1] and D is the disc of radiusl .

Figure 13. Schematic realistic domain with two Fichera corners.

The domain has been discretized by using &EM mesh, with geometrical progression to-
ward r = 0 with a factor of 0.15, having four layers of elements and tosar; = +1, having
45 layers of elements. The discretization of the domainaesgmted in Figure 14.

We consider the Laplace equation. Homogeneous Neumanrdaueonditions are pre-
scribed over the domain’s boundary, except for the follgwin

or =1 onl (7.1)
or
7=0 onl'yuTIy (7.2)
where:
Fi={zeR’|r=1,0¢€ (0,w), z3 € (-1.5,1.5)}, (7.3)

as shown in Figure 14. Under these boundary conditionsexsrhgularities arise afr, 0, z3) =
(0,0,—1) and (r,0,z3) = (0,0,1) and the exact EFIF is unknown. It can be expected that the
EFIF tends to infinity at the vertices.

Using the extraction ponnomiaIsBJéO), e ,BJék) , Where 4 < k < 15, we extract the
EFIF for Case 1 atR = 0.05 on three intervals on the edge:1 < 23 < 1, —0.9 < 23 < 0.9
and —0.8 < z3 < 0.8. These are presented in Figure 15. It can be observed th&RHes
extracted on—1 < x3 < 1 are influenced by the vertex singularitiesaat = +1 .
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Figure 14. The boundary conditions (7.1)-(7.2) applied on the FE model

8. Summary and Conclusions.

The EFIF extraction method presented herein is an extemsitre 2-D contour integral method
to 3-D domains, based on the mathematical framework whigirasented in [8]. The method
provides a functional (polynomial) representation of ti@fEalong the edge. This accurate and
efficient method is implemented as a post-solution operaticconjunction with thep -version
finite element method.

A hierarchical family of extraction polynomials was constied, based on Jacobi orthogonal
polynomials. The quasi-dual function method, with the usthe "hierarchial family of polyno-
mials” becomes adaptive in the sense that it uses a simpteguce to increase the degree of the
extracted EFIF polynomial, thus enabling a reliable andieffit determination of EFIFs.

Analytical solutions have been constructed against whietektracted EFIFs were compared.
As shown, the relative errors of the extracted EFIF were tlkas 1% , when the degree of the
extracted EFIF polynomials is determined by an adaptivéehatetand Richardson extrapolation
was used.

The extraction method uses finite element solutions and Gguadrature for the numerical
integration. Both the finite element solution and the Gawsslatures involve numerical errors.
The errors were monitored and the results presented in Alw&nshow that both the FEM errors
and the numerical quadrature influence the accuracy of tihected EFIF very little, when a high
polynomial degree is used in the FEM approximation and tteglpte order is at least 10.

We also demonstrated that in the presence of vertices, ar@ gradients in the EFIFs, one
may use the localized extraction method when applying i8] integral, thus improving the
accuracy over the sub-intervals of the edge where the EElBfanterest.

The results presented herein indicate that the method peopor EFIF extraction is accurate
and efficient. It is being extended to elastic problems ilylpetiral domains where the edge stress
intensity functions (ESIFs) are described byl a« 3 vector associated with eigen-functions and
their shadows. Although technically more cumbersome, ssigps as presented herein carry over
to the elastic Navier-Lamé system of equations. The Ndwiené operator (represented by a
3 x 3 matrix containing derivatives) is being split into threetrieees, based on which the eigen-
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functions their duals and shadows are determined andlytifca isotropic materials. These may
contain complex eigen-pairs appearing in conjugates. dJ$ia eigen-pairs, their duals and the
associated shadows, in conjunction with the developednpatyal extraction functions presented
herein, the J[R] integral can be applied so to obtain ESIFs. Extension ofwiuik to traction
free boundary conditions associated with elastic problefrengineering importance (according
to the mentioned milestones) will be reported in a subsdoquegrer. These ESIFs are of particular
interest in three dimensional elastic domains along that foba crack or a V-notch, because they
are used in failure laws (see e.g. [11, 18]).
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Appendix A
The Primal and Dual Eigen-functions and Their Shadows for Caes 1-4.

For the Cases 1 - 4 the operatbr can be split as in (3.5) with:
Mo = k110101 + 2k120102 + k20202, My =0, My =1 (A1)

Aa Computing the primal and dual eigen-functions &, and ¥, :

®, and ¥ are the solutions of the first equation in (3.5), where theaipeis M, on the plane
domain GG . A change of variables is performed:

ka2 ki

x1,T2) = T g2 1T v A2
Slone2) \/k‘uk‘m—kﬁ : \/k22(k11k22_k%2) i -

n(z1,z2) = “k‘%g@ (A3)

so that M in the new variables is transformed into the Laplace operato

0? 0?
e " o

(A4)

over a plane domairt?’ . The straight lines defined b§ = 0 and § = w in the original domain
G are transformed into the two lines defined hy= 0 and v = w* in the transformed domain
G’ where:

VFike — K si
* arctan ( Fuikas — ki smw) (A5)

wt = -
koo cos w — k19 sinw

as illustrated in Figure 16. Botld, and ¥, have to satisfy homogeneous Dirichlet boundary

X1 >
S S &
13

Figure 16. The plane domain= before and after change of variables.

conditions oné = 0,w in the original domain, which become in the transformed dama

(I)O(pv 0) = q)O(pv‘*)*) = \IJO(pv 0) = \IIO(p>W*) = 0. (A6)
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The solutions to the Laplace equation (by separation oalbes) are:

{@om 7) = p* (Acos(ay) + Bsin(ay)) A7)
To(p, ) = cop~® (Acos(ay) — Bsin(ar))

where ¢ is associated with the positive eigen-values ahdis associated the negative eigen-
values. The value of the constang is chosen so to satisfy an orthonormal condition as will be
discussed next. Equation (A6) results in (here we provideetjuations for®, , although same
ones are obtained fo¥ ):

<cos<3w> sin(gw*)> <g> - (8) (A8)

For a non-trivial solution,a has to satisfy:
v =t i=1,2,... (A9)
w

There are an infinite number of distinet; 's, for which there is an associateﬁéo‘i) and \I/éo‘i) ,
and distinct B; where:
A; =0

The generic constant is omitted, as it is added to the EFIRdrasymptotic expansion. To obtain
the solution in the original domaik- , a reverse transformation of variables is performed and the
functions ®{** and w{* are obtained in the coordinatest :

O, 0) = r g0, W 0) = ™ (0)

where

; 20— i in2 % . v/ k11ka2—k?, sin 0
(a )(9) o (kzz cos® 0—k12sin(260)+k11 sin 6) sin <ai arctan( 11k22 =K1y >>

¥0 k11kao—k?, koo cos 0—k12 sin 6

and

o

; 20_fygsi in20\ "2 . v/k11ka2—k2, sin 6
w(a )(0) o (kzz cos® 0—ki2sin(260)+k11 sin 9) sin <ai arctan( 11k22—k{, sin >>

0 ki1koa—k?, koo cos 0—k12 sin

One may notice that for the Laplace operatlr, = ¢;; , thenw* = w and the eigen-functions
and their duals are the well known expressions:

@ (r,0) = rip™(0) = 1 sin(ai) i
. . . : ’ al =
W (r,0) = g (0) = e sin(f) w

Ab The value of the constantc(()“i) ;

The value of the constantéo‘i) is chosen such that the primal and the dual eigen—funct@ﬁ%’f)
and \Iléo‘i) , Satisfy the orthonormal condition:

/ T(R)D) . vl — o) . T(R)U) | RdO = 1 (A10)
0
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where T'(R) is the radial Neumann trace operator related to the opetafor

T(R) = (k:ll cos? 0 + kyg sin 20 + ko sin® 9) 5r (k:lg cos 20 — —(k:ll — kg2) sin 29) %8@

Further details about (A10) are given in [8]. The value of d:knastantc(o‘” is extracted from
equation (A10):

cgaﬂ:( | @ eeel) - ) - (awéﬂ”)-T<R>(r‘aiwé‘“’>}Rd0)

One may notice that for the Laplace operatgy = J;; the Neumann trace operator simplifies
to T = 2 and c(()o‘i) = L, which is the known coefficient of the dual eigen-functiom é

-1

two dimensional domain. The explicit value of the constaﬁ‘) for Cases 1-4 is computed and
presented in Table 5.

Ac The odd shadow functions and the odd dual shadow functions

Once the primal eigen- functlonI)(O‘Z is obtained, the first shadow functioingo‘i) may be calcu-
lated by the second equation in (3.5). Becauge = 0, the differential equation is homogenous
with homogeneous Dirichlet boundary conditions and ttweethe first shadow function vanishes:

<I>§“i) =0 (A11)

The sequence of odd shadow functlorTB (Where k = 3,5,7,...), are calculated as the
solution of the third equation in (3.5). F@(o‘z) we obtain:

Mo = —M®{*) =0 (A12)

Once again the differential equation becomes homogeneitiub@mogeneous Dirichlet boundary

conditions so tha@go‘i) = 0. Same arguments hold for all odd shadow functions assaciaté

an operatorL having k13 = ko3 = 0, thus:
o) =0 k=357, (A13)

Computation of the dual shadow function@,,(f“i) , Is along the same lines thus for ady with
k13 = ko3 =0 _
v =0 k=357, (A14)

Ad The shadow function ®{" and its dual w{"" :

The shadow function@éo‘i) and its dual \Iféai) are the solution of the third equation in (3.5)
with 7 = 0. Itis a non-homogeneous differential equation over a twoettisional domain with
homogeneous Dirichlet boundary conditions. Its explioitt in coordinatesp, v is
0? . 10 n 1 02
op?>  pdp  p?0y?

The homogeneous solution is:

) ) = —p™ sin(as7) (A15)

o{ M = pI [ cos(f+) + BT sin(f~)] (A16)
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and the particular solution is:
. -1
(I)(az)P — = a2 ) A17
= e ein(an) (A17)

The particular solution identically satisfies the homogerseDirichlet boundary conditions so that
the homogeneous solution must satisfy these:

o a;)H o) P ) H
{@g /(p,0) = @5 (p,0) + 257 (p,0) = L (p,0) = 0 (A18)

% * i) H * i) P * i)H *
05 (p,w*) = &4 (p,0%) + 5™ (p,w) = @ (p,w7) = 0
The coefficientsA™, B vanish so that®, is the particular solution alone. We may conclude

(o7} ’ o;+2 Q;

where;:

a;+2
(i) (9) . 1 (kgg cos? —ki2 sin(20)+k11 sin? 9) 2 sin {ai arctan (\/ k11k22_k%2 sin@) }

902 o _4(012"'1‘1) kllkgg—k%Q koo cos 0—ki2sinf

Computing \Ilgo‘i) follows same arguments and we obtain:

WS (r,0) = i) rot 2yl (9) (A20)
where:
—a;+2
) 29 . in2 . k11koo—k2, sin 6
wéal)(e) _ 4(%1_1) (k‘22 cos? 0 k]jlfk?;_(i?;ku sin 0) sin {ai arctan (%) }

Ae The shadow function ®{"" :

The shadow functioncbff‘i) is generated by the third differential equation in (3.5)hwjt = 2.

The method of extractingbff”) is very similar to the method oﬁgai) extraction. The explicit
form of the differential equation iy, v coordinates is:

O 10 10\ _ () -1
L e S A21
<8p2+p8p+p2872> S qa ) (A1)

The solution of@ff”) is based on the particular solution alone since the homagsnsolution

vanishes under the homogeneous Dirichlet boundary conditiThe shadow functio@ff‘i) in
r,0 polar coordinates is:

(I)Elai)(r’ 0) _ Tai+490£lai)(9) (A22)
where:
a;+4
(i) _ 1 koo cos® O—kiasin(20)+k11sin20) 2 . \/k11koo—k2, sin @
Y4 (9)_32(ai+1)(ai+2>< ke, sin o arctan ( 3o g ) g
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(Case#t]| o | o | " |

Case l| 1.57 2/3 0.31831
Case 2| 1.1476x || 0.87139| 0.26903
Case 3| 2.0« 0.5 0.31831
Case 4| 207 0.5 0.23533

Table 5. Main coefficients of the considered cases

Af  The specific cases (1-4) eigen-functions:

The eigen-functions and the dual eigen-functions are difiryethe eigen-valueg; , the repre-
sentative coefficient of the domainy* (equation (A5), and the representative coefficient of the
dual solution,céo‘i) . The coefficients of the selected cases, related with thieefigen-value are
presented in Table 5.

We provide in Figures 17-20 the graphical representatiagheoprimal and dual eigen-functions
goéo‘l),gogo‘l),cpffl), éal),zpéo“) for Cases 1-4.

T N T T T

- - primal eigen function, 0 AN N - - Dual eigen funct\on‘, 0

primal shadow function, 2 A Lo 'E“fl shadow function, 2
—— primal shadow _function, 4 N 03F S Sag

08 7 N 4 . NN

0.6

04

Eigen - Functions
Eigen - Functions

02p ;!

Degrees Degrees

Figure 17. The eigen-functions and dual eigen-functions associattd & , for Case 1.

31



T 025 T T
Ssomm Tl N - - Dual eigen function, 0
~ Dual shadow_function, 2
N
R . 0.2t 4
.
N
N I
\ 0
N 4 015 PR .
\
\
’ \ ! \
2 ; \ @ !
s \ 2 ' v
£ J \ g o1 ’ \ 1
2 oar ) S 1 2 , \
c ‘ . z , .
[ ’ '\ [ , '\
<
- K N S 005- L . .
202 N = . A
i ’ N i .- +o
S \ eemmmm T T
' [}] sk R
! \
0 oL
-0.05- 4
—02b 4
I I 01 1 1
0 90 180 270 0 9 180 270
Degrees Degrees

Figure 18. The eigen-functions and dual eigen-functions associatéd a; , for Case 2.
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Figure 19. The eigen-functions and dual eigen-functions associatéd @ , for Case 3.
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Figure 20. The eigen-functions and dual eigen-functions associatéd a; , for Case 4.
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Appendix B
The Primal and Dual Eigen-functions and Their Shadows for Caes 5.

The operatorL for Case 5, is:
L = 0,01 + 9909 — 0103 + 0305

with:
Mo = 0101 +0200 My =-01 My;=1

For this case@éo‘i) and \Iléo‘i) according to the first equation of system (3.5) are:

@éai)(r, 0) = r%sin(a;0) (B1)

\Iléai)(r, 0) = céai)r_o‘i sin(a;60) (B2)
with o; = %’ 1 = 1,2,.... The Neumann trace operator for Case 5 is simply= % and
therefore the coefficient of the dual solutiondg’i) = a—lw :

The shadow functioncbgo‘i) is computed by the second differential equation of the syste

(3.5) and the shadow functiond{" and @éai) are computed by the third differential equation
of (3.5) with j =0 and j = 1 respectively.

( )(r 0) = 1 az“(sm( —1)0 4 sin(o; + 1)9)

@éai)(,r.’ 0) = 3_l2 roit2 ( sin(a; — 2)0 + sin(a; + 2)0 + 2(0‘1 ) 2) gin 0429)

1001 1o st 90 sl 59

+ %{ sin(a; + 1)6 + sin(a; 1)9}>

The dual shadow functionIfgai) is computed by the second equation of the system (3.5) with

Dirichlet boundary conditions. The shadow functioﬂéo‘i) and qu“” are computed by the
third differential equation of the system (3.5) with= 0 and j = 1 respectively.

\Izgo‘i)(r, 0) = %céai)r_o‘i“(sm( —1)0 +sin(o; + 1)9)

( )(r 0) = 55 c(()al)r_aiﬂ(sm(a —2)0 +sin(a; +2)0 + (a1+2) sin azﬁ)

( )(r 0) = 52 c(() )T_O‘i+3(sin(ai —3)0 + sin(a; + 3)0

+ 3(0‘1"'5) { sin(a; + 1)6 + sin(a; 1)9})

Qg —

Figures 21 present the eigen-functions, their shadows fagid duals associated with the first
eigen-value for Case 5.
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Figure 21. The eigen-functions and dual eigen-functions associatiéu thve first eigen-value,
ay , for Case 5.

Appendix C
Numerical Errors due to Numerical Integration and Finite El ement
Approximation.

The integral J[R] is computed by a Gaussian quadrature, and using the ap@tednfinite
element solution instead of the exact solution. These parate numerical inaccuracies in our
computations which should be controlled and bounded. WeCase 5 in this Section to quantify
the level of numerical errors, and demonstrate that thesaegligible.

Ca Errors due to Finite Element Approximation

By using a finite element solution as an approximation of tkecesolution, a numerical error is
included in our computations. In order to evaluate the imibgeof the error, we computd|R]

at different polynomial degrees of the test and trial fumtsi of the finite elements. The results
summarized in Table 6 are the values HfR]/J.x for Case 5 with(BCsy) (cf §4.b), using the
quasi-dual functionsk (") to K{*") with “proper” B(zs). The values ofJ[R]/Je. are not
influenced by the polynomial degree of the finite element@dpration when using high degree
of polynomial (p =5 or higher).

Sy

8
w
~—

1 (x5 —1) | (w3 —1)* | (w3 —1)3
8/3 “8/5 | 128/105 | —64/63

0.996084| 0.999703| 1.000080| 1.000068
0.995804| 0.999439| 0.999819| 0.999805
0.995966| 0.999646| 1.000032| 1.000016
0.997801| 1.001348| 1.001692| 1.001663
0.994830| 0.998490| 0.998890| 0.998882
0.989424| 0.995263| 0.996286| 0.996391

o~
%

TR I
Il
Wk Ul o~ 0

Table 6. Values of J[R]/ J.x , for Case 5 with(BCy) at R = 0.02 using differentp -FEM.
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Cb Errors due to Gaussian Quadrature

The second source of numerical error is due to the Gaussajuagiiused to evaluate the integral
J[R] . One needs to evaluate a double integral o¥eaind =3 . The Gauss quadrature ordey;
controls the numerical error in this case. In order to evaltize influence of the quadrature order,
J[R] was computed with various quadrature orders. The res@tepted in Table 7 are the values
of J[R]/Jex for Case 5with(BCy) again, using the quasi-dual functioméo(al) to K?Eal) . The
values of J[R]/Jex are not influenced by the quadrature computation even atider@s 10.

B(I,Ug) 1 ({,Ug — ].) ($3 — 1)2 ({,Ug — 1)3
Jex 8/3 —8/5 128/105 | —64/63
ng = 10 || 0.996092| 0.999705| 1.000079| 1.000064
ng = 15 || 0.996084| 0.999703| 1.000080| 1.000068
ng = 32 || 0.996085| 0.999701| 1.000077| 1.000064

Table 7. Values of J[R]/ Je , for Case 5 with(BCy) at R = 0.02 using differentng; .
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