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The Problem

The inf-sup constant of the divergence or
Ladyzhenskaya-Babuska-Brezzi constant:

B(Q)= inf sup s
qe12(Q) venl@d |v], llall,

Q is a bounded domain in R<.

Question: Does B(Q) converge when

1. the domain Q or

2. the function spaces
X = H,(Q)“ (velocities) and
M = L(Q) (pressures)

are approximated?

Generally: Upper semi-continuity

Choose subspaces Xy C X and My C M and
define the discrete LBB constant as

/divvq
By = inf sup 2

qEMN vVEXy |V|1HQHO

Theorem 1.
If (My)y 1S asymptotically dense in M, then

(USC) limsup By < B(Q)

N—oo

Domain upper semi-continuity

Theorem 1 can be applied to inner approxima-
tions of the domain Q:

Corollary.
Let Qn C Q and define the subspaces

Xy = Hp (Qn)? and My = L2 (Qy)

via extension by zero. If meas(Q\ Qy) — 0, then
(USC) holds in the sense that

limsup f(Qy) < B(L).

N—o0

Upper semi-continuity in FEM

For approximations of the function spaces, for
example via Finite Element Methods, a conse-
guence of Theorem 1 is that

“Discrete Is never better than Continuous”

Suppose that a uniform discrete LBB condition
has been shown:

Then

B < B(Q)
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Domain Convergence

Theorem 2. Let Qy converge to Q in Lipschitz
norm, that is: Iy : Qy — Q Is a bi-Lipschitz
homeomorphism such that ||V(§y —Id) ||z~ — O.

Then lim B(Qy) = B(Q)

N—o0

Polygonal approximation

Corollary. Let Q c R? be piecewise €%, and let
Q,;, be polygonal approximations of side length
< h and such that corners(Q) C corners(£2;).

Then B(Q) —B(Q)| < c(Q)h.

Examples: Domain approximation

FEM Convergence

Theorem 3. For the h version FEM on regular
meshes, if

hx/hM — 0, then ﬁN — ﬁ(ﬂ)

For the p version FEM, if

px/py — o, then By — B(Q).

FEM Non-Convergence

Proposition. Let f(Q) > 0. There exists Sy > 0
such that for any B.. € (0, By| one can find a finite
element method satisfying limy_... By = Bw .

Q, , Cusps 0 < y < x!1/N: B(Qy) =0, tend to triangle B(Q) > 0

B(€) < Blcorner) < /1 = B() (disc)
—> NO convergence
A

— NO convergence

Regular polygons, 0 < () — B(Qn) < 55: Convergence

Examples: FEM approximation
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Scott-Vogelius P4-P$¢ elements on near-singular meshes
— lim By = B arbitrary

First Cosserat eigenfunction (pressure) on rectangles:
Corner singularity depends on eigenvalue.

Computation of B2 (lowest Cosserat eigenvalue) on rectan-
gles with Q;5-Q, Stokes solver, refined mesh, ~ 30000 dof.
Various theoretical bounds are shown.

Red line is upper bound from continuous spectrum.
Approximation for Square is very bad!

Lo . - Computation of first 4 Cosserat eigenvalues on rectangles.
HH——— — —— Left : px =8, py =4
‘ Right: px =8, py =7

Cosserat spectrum and corners in dimension 2: An Upper Bound

Let . = divAg. V be the Schur complement ope-

rator of the Stokes system (Cosserat operator).

Then it is known that | B(Q)”> = minSp(.¥).

It Q has corners, then . has a continuous spec-
trum, which can be determined by Kondrat'ev's
method of Mellin transformation. If the problem

(cA—Vdiviu=f, uecH; Q)

has corner singularities whose exponent has
vanishing real part,
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then o Is In the continuous spectrum. For a cor-
ner of opening w, this contributes an interval:

1 |sinw| 1 [sinw]
~ —~ Sp(.¥), hence
{2 0 "2 20 } < Sp(7)

1 |sinw)
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