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§0 1ntr0ductmn '

The mam purpose of thm paper is the proof of asymptonc error est:mates for

the finite element: Galerkin approximation of the. boundary mxegrat equations
for a-mixed D:rlchletﬁNeumdnn “boundary value. problem for the Laplacian
ina piane polygonal ‘domain, Th]s is & genemlazahon of [58]; where the case
of ‘a domain. with'a “smooth boundary was tredted Thn generahzatlon ns
natural i two’ respects: - ' : '

On the one hand, it is well known that the soiutlons of eIIaptlc boundary
valug probiems have, a similar kind of s:ngular behav:our at.corner points of
the boundary: and at pomis where the bound.iry is smooih but the boundary
conditions change e

‘On the other hand, a iot of appl:ed problems leadmg to mlxed bound~

' ary vaiue problcms l‘or the Laplacian (for some examples see the mtroduc—

tion of: [58] or. [SI}} actually mvo!ve domains with- nonsmooth bounddrles
The method used in 58] is andlogous to: the Fix method for 2-D finite
elemenits [591 [531 It - uses. ~the’ decomposmon of the “solutions of the
boundary value probiem into. d smgular and a. rcguhir part,: where the
smgu]ar part is a finite- hnear combmanon of known smgular functions which
do not depend on- the gwen boundary data ‘but only on the geometry, and
thc reguldr part 18 apprommaied by rcgular finite element functions. “This
decomposxtron was proved; -e.g;, by Lehman [347 using conformal mappings
for: plECGWIbC analytxc bounddnes and. the Dirichlet problem,: by Kondratiev'
[3t] usmg the Mellin transform and ‘the framework of weighted Sobolev
spaces . for generai boundary cond:tlons by Keliogg {28] {29] using
elgenfunctlon expansions,, and it has been generalized . by -various authors
(eg [38} {39] [18] {4} E37]} Our standard refetence is {20] '
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- The main tool for proving the convergence of & Galerkin procedire is
strong. ellipticity ([52], [22], [55]). For the boundary integral equations this
means that one has to prove a Gérding inequality for the mtegrd[ operator

_involved. Theie are two ways known to do this: :

For the Dirichlet problem oné can explou the coerciveness of the
. Dirichlet bilinear form, thus 1edu<,mg the boundary integral equation of the
tirs{ kind. to the variational ptoblcm on the :two-dimensional domain, This

was used fo. show the” posnmty of the: mtcgrd} operator of the ‘;ingic layer

potentml on. s*mooth curves’in [24] [35] and of othei mteng operators
[43], and. error cgtsmdtes for the Gdlerkm dpproximauon for: the boundary
: mtegmi equation for. the. Dirichlet probiem on polygonai beundar:cg were
treated in [ 7] The' bounddry integral equations for- the mixed ptobicm on a

“ smooth’ boundary arc of a special form which aiiows the: reductlon of the - |

. Girdmg mequal:ty for the whole. system to the one for the smge ldye:
potential. " This was used in [57], [58]. :

‘On smooth.-boundaries. there exists also the not;on of bttongly eﬂtptxc
_systems of pseudod:ffewntml .operators,” which can be used bec&use the -

' bounddry mtcgml operators are pseudodxfferenml operators, The Girding

inequality in this case can bc proveé by showmg the positivity of the: symbol

which'is: wlculated by means of ‘a local Fe ourier transformanon or expansmn
inito Fourier. series. This was tsed in {561, 521 R

“ For thc mixed: bounddry valie problem on: dom&ms w:th Gorners ‘none

of theﬁe two mcthods ‘works.. Everi” for the proo{ of the' contmmty ‘of “the

mtcgral op{:rdtor‘; in the dpproprlate Sobolev spdCGS one has to ﬁnd dlfferent

_ We use the. Meilm transform and 1t turns out thai thzs is & very uscfu!

‘tool,- which- aliows us: o prove not ‘only the contlmuty of ‘the mtegrdi
. op{:ratms but also the reqmred Girding inequality and’ wen the decomposn~
- tmn of the solution” into regular ‘and singular parts.

“The’ u%efulnebs of the ‘Mellin transform in connection with- domams with
corners was shown by Kondraticv (317 and generahzed to pseudodlfferentmi
boundary value probiems by Komeé 301 For ‘the boundary mtegral equa-
tions - it “was" used eg, by Fskm {91 for the ‘mixed . problem on smooth
domains and by Fcibef; et al. [Iﬂ] [11] for'the’ Dulchiet problem (in"I?

. _spaces) in a sector.: “The latier, -authors use an miugral cquation of the’ second_

kind mvoivmg 1he opemtor of thie double layee. potent:dl ‘and: they calculate
s Melhn symbol For' smguidr mtcgm] equcttmns ‘with: plecewme ccrntmuous

' _-.coefﬁcnents and curves ‘with “corners the Mellin transform was “used by

' _'Duduédva [8] and s;mxldrly in [6} l:o obtam a Cdiculus of symbo (Cf {14])
" The use of the Mellin tmnsform for’ the mvest]gat;on of the operators of
the single and the double’ iayer potentmlq in"Soboley sp&ccs scems to- be new.
Therefore, in spitf: of the fact that the aim of the paper is the mchtagdt]on of

the. numemdl dpprox:matlon schemc we devote a lot of SpdCG to the
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derivation of functional analytic properties of the system of integral equa-
tions and a calculus of symbols, which then allows us. quite casily to find
the explicit form of the singular parts of the solution. It turns out that we do
not need the local Fourier transformation. Potential theoretic arguments are
essentially .only needed for the uniqueness proof

There exist numerical methods for approximately solving mixed bound«
ary value problems on. polygonal domains by means of boundary integral
equations (see [1], [23], [27], [40], [46]). They arc bdsad on the collocation
method, and in general no error estimates are dvculdbie {471 The error
estimates which we obtain are of the same ordcr as those obtained by the 2-
D finite clement method ({57, [12] But, in Lontmqt to the latter, we get
simultaneously error, estimates in higher Soboley spaces and not cmly in the
energy norm. (i.e, the norm' which corresponds to. the weak formulation of
the boundary value pl‘(}blem)..__Thi_S._dHOWS_ us, c.g., to get easily L~ -estimates
as.well as. error estimates for. the coefficients of the singular functions, which
have. a dlrect and impﬂrlant meaning, €.g., as stress- mtcmlty fdutors in
mechamcak problems

Some problems. which we hdve not yet ttedted but which are solved for
smooth boundaries in. [38] are: :

invcst:gdtlon of-the pcrtulbdnom arising from. curvatme terms if one
considers curved poiygom _

Investigation of the mapping properties of the mtegrai operators in
Sobolev. spaces with negative indices. This would give higher orders of
convergence by using the Aubin Nitsche trick [25] and error estimates for
the Galerkin collocation method [25]- This. method is éasily 1mplemenmblc.-
on a computer ‘and gives good. numerical results, as was shown in [33] for.
the case of a smooth boundary. The paper-is organized as follows:

In§t we collect some facts from potential theory and give the decom-
position of the weak solution-of {he ‘mixed bounddiy value pioblem inio
singular .and: regular-parts. : .

In § 2 we. collect the: nac,essary facts dbout Sobolcv spaces (wnh and
w1thout welghte) on poiygom dnd ‘on the” Mellin ‘transform in weighted
Sobolev spaces. Here we prove 4 result on the ‘Mellin transform in' HY*(R, ).
Thén the Mellin. symbols of the 1nteg1al<; of the single and double layer
potentials are compuiecd: dnd used to prove ‘the continuity of the integral
operators in Sobolev “spaces.“The  Garding inequalities for the system of
integral equations corresponding to the boundaly value problem are derived:
one for the original system in the Hilbert space which corresponds to the
energy norm, and a second one for a modified system in the Hilbert space
which corresponds to the standard Gdieikm procedure for integral equations.
Unfortunately, these two H:lbert bpdceq do not comc1de and thts causes a lot
of trouble. '

In §3 the unique soivabihty of thc system of mtegxai equdtlons 1s

t2° — Basack Center I’ublicnlioﬂs_ lS
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derived. At this point we need an assumption (V) on the domain, namely that

there is no cagensolutlon of the exterior Dirichlet problem. This can ahways:
be “achicved by '« scale transformation of -the domain:’ Then we show the

 bijectivity of the integral operators. and the equivalence of the system of

integral equations with ‘the weak formulation: and the dlstrlbuttondl formuu_

lation "of the boundary value problem: -

“In’ ‘\\4 we use the calculus of Mellin symbols cmd c.alcu!atc the expilut: .
form of the singular fiinctions . as well ‘as the compdtlblhty conditions which

- have to be satisfied by the data and by the solution in various, specmi cases.
Ht,re we also. obtain the ‘regularity ‘results for the solution of the mtcgrdl
equdtzom which are needed for the equivalence theorem: in § 3. '

- Finally, in §'5 we define the augmented finite élement qpaces and the-
‘Galerkin dppwmmaiion ‘schernies. Then we show the stab;itty of the Galerkin:
operator. in the energy norm. With' the help of the conver gence. and- inyerse
propnrtleq of the dugmentcd finite’ elcment spagcq WO thcn prove dbymptotle

errot estimates i var;ous Norms.

&L Varm&% formuiatmm of tha m;xed b{}umiarv value proh!em

I 1 We considcr the ml)(t,d bounddl vy value pwbiem fox thc idpldu‘m_'

=0 e
o .uﬂ '._On-T',. g

»F'".C}z on Ty, 1

wheae Q ;s a bounded snnpiy conncctf‘d domam m R2 w:ih & polygondl
bounddry = _F 1 ulz = U JEANE. bemg opcn btralght line segments By

t(t =0, J} we- dcnote the cornet pomts “where Iy dnd .F { - meet
(t; = tg): The mtemm angle at’ t; is denoted by ‘@;.

Let D N, and M be thie subqetq of {¥,.... J} for whtch.t eIi, t eFZ,_ox.

g e[ AT 35 tcspectwe o dufdn means - the normdl derwatlve wrt. ‘the ouiter
normdi i, which. exists 0u151de the LO{‘I‘!CI‘S The deﬁm’uon of Sobolev 5pd(:es'

IS as. usual [20_] [36} - _
HS(Q)H lu o ueH”(Rz}, '(s'é“k);'-f_-"

u;[ uEH‘”’Z(Rz)‘ :(s' >0).
H-‘(F}f“ LZ(D (sw())

k. (H ‘([)) (dual space) (s <(_)) _ Lol
HY(Ij) = {ugye I us HI(D)} (s = 0) '(}“-'-:-1,‘-_2'; ‘similarly for 1Y), -
16 (1};_ fue HY(I') e 1’ () (s 0)}. B
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u N uonI __ th conti ion of 11 by 0 |
ere o = means the continuation of u outside I';.
0 on F\F S S S !

Finztiiy, o .
' LOHY = (A (s <0),
: H"(I’j)—(H (FJ)) (s <0).

The moet geneml case where (P) c(m bc Lonvutcd mto a v&nahonal
probiem is the fofiowmg :

Nz EHW{I O q;eH -”.2( 2} are givcn and” we, Iook for: ueH (Q)
in thlq case, ;—ue g 172 {F )c: H ”2(__) is deﬁned by Greens formuia

Lemma LF ([48} p 6) Let ueH {/1 p, Q)= {ue HU(Q)| due I7(Q)}
{(p=>1), ve H'(Q). Then S : SR

(12y. o jziu v_dxfflﬁf-u-.!_’/u_dx :<u3, 5|1‘> R
.. R J S Q. RN CONUR L y H'Tl/?{'g:)_'xigl_."zuf,':

Fhe mappmg auwa»( Hl(/f p, Q) 1”2(1') is wmmuom -

Hele {x >H flzmxﬂilzui r_nedns the duahty be{ween these spdces

12. in dddiiiOl’l to the drstnbut;on formuldtmn (P} of the mixed
boundary value pmbiem we need the variational formulation for the same
problcm and the boundary mtegrdl eguations wlnch are obmmcd by insert-

1
mg the funddmeﬂtal solunon 'ﬁ loglz—Ci for the L api&man into Green's an

1dent1ty For th;s we, hdve the fo]lowmg rcpres;entdtlon by voiumc potent;ais
and bounddry potentm]s :

LEMMA L2 La e H! (zi p, _Q) AwwfeL2 ’I‘hen fm zeQ

(1.3) - u(z) J‘f(xjiog |z~x:1 dx+

4o Jzt({)m—lqglz z:idsgmf“igl oglz- Jds;.
B |

Here ds; is the: hiéas‘tire on I’ deﬁned b‘y the‘ arc length and
[(au/an) log Ez 4 ds, |

is to- b:,, understood as (Ek;/ﬁn lﬂg[z

,>H§1;2m ><HU2m‘ :
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P:oof E*or u, ve Hz(Q we h‘we Green's 2nd identity ([42]):

(Jn R

V- O
(14) . {uAv-—Afu v)a’x = J (u-(—[-i-—it—in}is
0 - "y . o _
l .
We use thlq f01 v{x) -—é— logiz — x| 'md 52 Q\K (z} where K z) is a

small d:sc w:th centre z and radius ¢ whu,h 13 COﬁtdn’lCd in Q. Thus Fo= GQ
= I\ 0K, (2}, (}bvmusly, ueC‘”{Q) Now C”’(Q} is . dense m Hl(zi D, Q)
([20}, Lemma 1539), and if w, —u in H'(4,p, Q) then: u,‘i, ?+u|,

HY2(r) and {(e.g., by (1.2)) (Qin/ on)ly, w>(Uu/('*ifz)| Cin HO VL) Thcrefore

(1.4) holds for ue H' (4, p, Q). Now, mqadt, K. {2} wc th{‘, ue HZ(K (z ) ([36} .

p 125, Th..32) and therefore the: represeniatxon formuid

(15 _-:u(z}:: J Au(x}v(z—'—x}dx—-i-'j (u‘i’i_?“u)dq L
: : . _ on_on ) . :
' K (=) K A2 .

holds. Now we use Av=0-in €, Au = f, and observe that the normal
vectors in (1 4) and {1.5) have opposzte directions. Thus we obtain (1.3) by
adding (1.4) and (1.5). = - .

In addition to this we shall need thc followmg contmulty pzopertles of
‘;mgic and double 1ay31 poténtials: -

Eewna 13 (i) ([323 Th. 219). Let qu"(F) and 3

_u(-z).:_nj--_w_»-. g(é}—'.— _log-lzmgids; (ze®).
= 08 O A R

G

Then u is harmonic in £, comtingous in €, and- . .

(1.6) Cu@) = =g J‘f )5 loglz~ds, ~ (zeT).
_ o o, T LR

(i) ([13), Satz '1} Let geIN(D) (p '>" Ooamd

i IR
(Z)w w—-J (slioglwilds (zetd).
_ L i B
Then u rs harmomc in 2 and commuous in Q.
L3, Let us now_s.uppose that. we H! (2} \is a solution of {P) with

gre HYAH(I ) and gye H V(). Then, if ve V.= {ve H' (Q)|v],, =0}, by
Lemma 1.1 we have ' ' : ' '

(ry . 1Vu Vud?cw <J2,

A U'»‘z - 113(:2)xﬁiﬂula

| {l-.8} . t i’w Vvdx ER ‘ Vh Fzm’x%(gg,' §;2>
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(Note that o, e AY2(I,) because o], e HY2(I') and tlp; = 0) This means
that wisa soiutlon of the following variational problem: Fmd ue H (Q} with
ul,: =g, such that for each ve ¥ (1.7) holds.

The converse is also true: Let-u be a. solution of this: var:atlonal
problem. Then 1 Vui?'v = 0 for all ve CF(2) and thus u is hai monic in 2. By

Lemina 1, A, Hu/(}neH ”2(F and (;u/ﬂnl,,2 =g Fhus uis a eoiulmn of (P).
‘In"order to use Grisvard’s regularity results for the weak solution of (P),
we want to formulate the vauatxonal problem in a different way which is
equivalent to it:
Let §oe HY* (I and §,e H ”‘"([’) be, respectwcly, extensions of ¢ gy and g, to
I'. By the trace theorem (scc [20] and Lemma 2.11) there exists an heH' (£2)
with A, =g, and Dh/ n], = gz De[me weu—he H? (Q) Fhen from (.7
follows -

| v | .'1-“112(1'2}'..&'1/2(1"2)"
The rlght hdnd 31de of (I 8) dcﬁnbs a bounded lmcar functional on ve ¥, The
variational probiem now reads: Find we V such that (1.8) holds for each
ve V. .
' By thz, Coeruwty of the Dlrzchtet bilinear form on V' and the Lax—

Milgram theorem this problem has a unique solution w.

- If the data are smoother, cg., (41, gaye H?(I\) x HY2(I'3); then
he H‘2 (£2) and by using Green’s formula dgam the nght hand s;de of (1 8) can

: be rcwrltten as

'(1 9) el e -‘[Vw»r?ud;cj:J';{im-»_cfx

because, on F 5, Ohfon wg2 : o

(1.9) is the weak formulation of (P) which is of the same form as the one
used by Grisvard “in" the mixed" problem for the inhomogeneous Poisson
equatlon with homogeneous boundary values. -

14. For the solutlon of the: varlatmnal prob]em the following regularity

~result holdsy

THEOREM i4 Let (gl,gz)e Hl"z(l"l)xH Y2(I3y  be - such that
g;[rJeHs(FJ) for Ml and gy continuous .t t; for jeD and g,| ;e H (1Y)
Jor Pre Iy Let s>% and (smz)wj/nzéZ for jeNuD and (s—Pon+i¢Z
for jeM. oo
' Then. the weak soiutmn ueH (Q) admzts i decompos:tion

k=1 "
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where uge HEYY2(Q) and iy (k = 1, ..., r) are singular. functions not depending
on gy. 1. which-are d_escrib_ed_below The fbllowinq @ priori estimate holds:

(1-“)'- 'HHOHHS'I-U.Z(Q)."{".Z ickf (“Jzﬁﬂe{,g,“i" Z Gz”Hs 1”;])

. ey oo .
To cdc,h corner pomt £ thete belongs a- set of sm;:,ulal functxons Wit
' Ifml 2,8, 0.5 . .

: I}ctmc-' _ L T TR S
. : !ﬁ/w-. “ . for jeDUN,

(l-z) Or__' JeM.o e
Then fo'r'a'j,gm | | o
_ o/'sin ey ¢, - for jeD and for je M with - IV < I,
{1. E2} uﬂ{x) ajy e -
o cos g, ;- forje N and for je M with I’ < r

whereas for ape N -
(L1 wp(x) |
_jei"log p sin aﬂgbﬂ»qu g, wa - py for jeD and for je M with I T,
B gf‘logj ¢ cos cxﬂq/) o) i osj,qﬁj _ fos jeN. dnd for: ;eM with [V < Ty

Here (Qi, rf),) dre posmvely orlented local p{)lar coordmdtes dt ihe vertex L
such that ¢; = 0 on I¥'" and qu wjon IV, : :
The functions #, in (1.10) drc constructcd from the uj f by muluphcation
by a €=-cut off function which is. 1 near. £y dnd whose support doe% not meet
I’f()fjg?ljj{*l’ :
L In (1.10) we find exac,tly those functions Uy for .which

"1<l<m-~--(sm1/2) o for -j'eDuN,-_...'_-
<J(SM1/2)+-% for - FeM. oo

Remark 1.5, The gpneral form (} 10) of this theorem, which goes bdck
3t0 Kondratiev [31], is well known (see, e.g, [5), Th. 83,1, p. 271, d4nd [29],

Th. 1, p. 593 and p. 598 1T, Proofs for special cases are given by Grisvard

[18], Th. 2, (s = 3/2, also the W* P.case for p# 2°is treated there; ([20], Th.
5135, po 5.1:34) (s~ 1/2e N, also- for- obligue . derivatives and p # 2. The
explicit form of the u;; was also derived by Raugel [48]. '

. The general case for noninteger. s 2 3/2 can be derived from the results

of § 4 in connection with the result for integ:er's_—'— 1/2. The singular fun:ction'fs ..
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;0 i (L13) are solutions of nonhomogeneous. pxoblcim with smooth {poly-
nomial) boundary data. :
For the present case we want to use a simple consequence of Theorem
1.4; In order to derive the boundary integral equations for the solution of the
variational problem we have to satisfy the ;—1ssumptions of Lemma 1.3:
_ CGROLLAR\ 1.6 Let s = 3/2 +k, ke NG aml g1, gz masfy the assumptums
of Them em 1.4, Then L : _
: S _ . ool : C
_ z;l,;e C-"(F) cand | eIP(D),  p>1.
Proof: From the. representation (1.10) follows | JGH’?“”{I"} where
& < mm oy Prom the dthmtlon of ay iollows ay > 1/4, dnd hence & = 1/4 is
posszble Thus ul,eH”“(F} I C‘}(F ) by. GObOEcvg embeddmg theorem. For

Bufon|, we use the explicif fozm ol ozzJ,/cnm((;f‘ el” p>1 and
u eH‘“’z(Q) IS HZ(Q} whence ﬁuo/anll e H'AI) < IXT). » o

- 1.5 Let LIEH (€2) be. thg Vdrldtzondl soiuuon of (P} 1hen by Lf_,mmd 1.2
we thc the replcsenmtion fm muila: :

1 |
(115}u(z) Ju(g} 10g|4~C|dsc 5 JU’:(E) logle—lds;  (ze ).
oo E o ¥

Supposc now. . thdt (Gis g2) qamfy the assumptions, of FTheorem 14 for

_sdmc § == 3/2+k ke N,. Then, by Corollary 1.6, the dcmmcs on the right-

hand side of {L.15) satisly the dbsmnpttons of Lemma 13. By this Icmma we
can tdke the Ilm;ts of (l 15) for .:.EI and get

i)

u(z) 3 u.{z)fémzﬁju{z,) 1og]z~(,ldsg 2 j Fve l?g|z__f_c?tcis§ _
or _ : _ _' . L .
(1.16) u(z) jﬂ{C) wnglmeIdg J&;{{’} Eogl.@kgldsﬁ (zel).
S r

If we introduce the mtegral-. opcrat_o'rs of the sihgle_ léiyer ‘potential

Yy(z):= ~;Ef9(e) loglz—Clds; - (zel).
and of the double. layer potential
(1.17). Kg(z)i=-— jy(é’)-' logiz —{lds, = m---~--Jg(C)dffg(2), '
. | w7 o O

o . . T
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where 0 (z) is the angle between {—z and some fixed direction, then {1.16)
c o du

(1.18) I (I+K}(u| )—. (—

" reads
onil )

If we insert into this equatron the given datd g1 =l and qz = ﬁu/ﬂnl, and
dcnote the unknown boundary data by v = ufy, 2 dnd tj/ = (Ju/anl rys WE get the
systcm of integral eguations

(1-19) . [1%1’(22 _*Vlz][b’];{ .“".Kiz - [Q1 ._ :
e T ._K“- Vi L 1+HKy =V flgaj

where for f k=i, 2

Kug@) =~ qu Iog;z {ds, (zely,
i_/,-kg(z*)z—;{-JQ(C)Iog&_mé_ldsg o zely.
1y
This system, which WG"abbre'v'iat'e_by .

(L20) 0 U = # G,

s a coupled system of a Fredhoim mtegral equation of the second kind for v
_on I, and an integral equdtlon of the iirst kind for y on I'y. For the case of
a smooth bound‘xry curve, the mappiiig propcrues of this ‘system have bcen
dnalyzed -and. asymptotic error estimates. for- the eorrespondmg Galerkin
} approximation. procedure have recently been obtained in [58]..

~ Analogously, from (1 18) one can derive boundary integral equations for
different boundary conditions. If instead of the mixed Dirichlet-Neumann
problem (P) we have, for example, a mzxed Dirichlet-Robin problem

(u _ _

lp, =gy _(a';?%-du). =g  (d a smooth co_efﬁcie_'nt function),
. SRR L : c

_then instead of (1.18) we get

.(1‘2.1_) _. o | .[#0 { szd O]IU }?0

Vaid 0

From: the rcsu!ts of the next sectlon it will be cEear thdt tlns dszers by a
_compact. perturbdt:on from (1.20). Ther ‘from’ the generai results [52] it
follows that the optimal error estimates: for the approximation of {1.20) imply

those for (1.21) (compare also Lemma 5 2} (1. 21) wag approxnmately solved by -

= _COHOL&UOH in [40].
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§2 Mapping'-pmpertia;-of the integrak operators

In the case of a smooth boundary it was shown in {58} thdl (L 2()) is
a strongiy elliptic system of pseudodifferentral equat:ons which means that

r .o, there holds a Garding inequality in some Hilbert space. This is the
esqentlai tool for the proof of convergence of Galerkin's procedure. In this
section we want to show that again there is a Girding inequality in
appropriate function spaces. In contrast to the case of a smooth boundary,
the integral operators in (1.20} in general are not pseudod;ﬁerentidl oper-
ators, so that the Fourier transform is no longer a valuable tool. It has to be
repldced by the Mellin trmsform ‘which, howeve: ndturdiiy acts in weighted
Sobolev spaces and not in the usual Sobolev spaces (cf. [317, {3], [4).

" Therefore we need a detailed investigation of the connection between or-

dinary and weighted Sobolev.spaces and the Mellin. transform. _
* 2.1. Before considering furiction: spaces on the whole polygonal bound-
ary I, we take a closer look at function spaces on a-single segment or, more

generally, on the semi-axis R, . The weighted Sobolev spaces on R, which
were mtroduged by Kondrdncv {31} for mteger i, have the. norm .

= f-(x“ DU+ () .
OWIRLY 0 Lo o
The general definition and a lot of properties of W;(R.) for seR can be
found in [4]. We need only the case o -*O where we hdvc for § = m+o0,
meNa, ae(() i) the norm _ B o
R E S 1 [ SR L ,+|ix“u1t,;m S
T COWSRY) A
with.- ST

G’)d)

jiD*"u(x} D"*u(y)mx yl ““ﬂdxdy
This space coincides.w_ith_ P’M'in [18]."Fm s <0 we define Wi by duality:

W&(m) ~( ﬁf“o(m))’.

1t follows from {4] that these spaces ‘coincide for a]l seR thh the spaces
Hi;(Ry) whach are defined: via th_e Meihn transform (compare (24) below).
The definition is as’ feiiows

- For q,‘)e C§io, oo) the Mel]m transform & is deﬁned by

ol

(2.2) (A) = j e ““¢>(e"‘)dt jxd Ch(0dx.
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Thus the Mellin transform is a composition of the Euler transform x+se™",
_WhiCh maps R, onto R, and the Fourier transform. For more general
distributions on R, the Mellin transform ‘is gen:.ra,hzed by using the usual
: 'generdhzdnonq of the Fourzer transform The mversmn lormula is

(2.3).:_:_ Lo d)(e )Fjjt" f "'(P(ﬁ}dg

© ImAd=const .
EXAMPLFS 21 (1) c,bc C(0, )< e ,Z’ ie ([) is dn entlre functlon of
exponcntlal type which'is rapidly decre&smg for Re 2= Jroo

() ,{ECO [0 o) w1th supp(l—,g) c(() oo)<:>i((/) ( )/, wﬁh gbefz"
(Im A < 0).. '

~(iti) u(x} = X ,{(x) w;th / ds in (n) < u( qb(ﬂ)// =i Wzth qbe ,f
(ImA<a), :

Aiv)ou(x) = x {0‘;:> x) }r(x) w:th X as m (11)@:;()) (/)())/(f w}“‘ with
.:/)gj‘(lmﬁ <o: le Ny R . :

" LEMMA 2.1 (Parseval equatlon for the Mellm tmanorm [4] p 367 373}
For ¢eCF(0, o) we have the equivalenice of norms

(214) Sl oo~ (1+u;2y;¢(;w, (seR),

‘B(R{) ImA=s— 1j2 -

mzd WO(R ) is the (omplenon of C(0, o) in th:s norm. .
" Since We aré interested” in the Sobolcv <;pd<,u, w1thout welght we shall

need a similar chdrdctenzatmn of the Sobolev SpdCe H 1’Z(Ih) by means: of
the Mch transform. . :
The norm in H”Z(R ) is given by
- nunyuzm . uunimurwz@ o
with the seminorm deﬁned in {2 1)
. LEMMA 23, For ueC(,'(O, a0) _hofds:

(2.5) |

Wz, = 5= | (02 coth nz~1)iu(ﬂ)| dﬁ J

Imio . o ImA= 0

A2

_ I?il] (A2 dA.

Here ugain a"méans_e_'(wiﬂdléﬁée ' of hor:ﬁs’. '
Proof: By (2.1)

Wi,y = | ({'lu(x)m_-u(};),z;g;g- *dxdy.

if the mteqm! exists.
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We substitute g(1) = u(e™’) and get

S 1
.|“|fi112(3+, = E’é'“‘.'_é.“tgz ol )dtd
N IO Er1C) ;;(:izj)ﬁgif}; o
) 4[5mh((f""f)/2 smh"" h/2)

Now = Pq, the l*Olii‘lCI tmnsform of . By the Parswcli equat:on for
the Fourier transform. we obtain

(=)

{ gl +h—g 0 i = ;g .fl(éﬂih_ D a(AN? da.

Thiss | .
. . .. . 1 % 00 ieaih ”2 N
: I §H1[2(R+) . J‘ lu{‘jHZ( J Ey hZ(h/z)dh)d) |
With '
e 1;2 o smz()h/z) 1Zcos AH
T N L dh = b= |2 = d coth
+ j smhz(h/2) '_ bmh?‘(h/z)d cosh h—1 dh A o h A=

by [49], 3.-_58_3.2, we obiam (25) =

CoROLLAKY 2.4, There exists a C >-0's'zic"h that /'O?"' ué'GZi(O; 90}

26 [t ;fg<a+,~*§c”f ,;U‘

C Imi=4a

i (A—— 1) dl

Pmof By deﬁmtlon H- ”Z(R )*H"Z(R+) Hence - o
l<u $>;2(R " < i< ¢>[2

“u”g 1/2 : up e AN
(R.). '!'E“(O ur) w’ HUZ(g) A M’];,rz

'Now by (2 5) dnd the. CauchyA'S(,hwarz inequality. we: have

. el : _______ P
i W | f ww(ﬂ)dﬁ 2;} f u»»:)wwdﬁ

lm.l-.—ljz ' : A rm;r()
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1 ' I“‘%‘H ,' ' ilz 2
& ™ J *ljj‘fl a(A-*d J ”fﬁﬂ’ﬁ(ﬂ)l dA

tmi=0 : e - Bmde (¥
. . '2 L * A . » 3 L
< Clhiy2 W—l ()&——z)l dz,

: Where the path of mtegmtlon has been shxfted accordmg to the analyttcxty
and rapid decay of i and .

- Fhe welghted Sobolev spaces WO(R+) se R hdve the mierpoiauon
property - e R

@n [ (R:), Wy (Ri)]o = Wo(R+) : _
' (50 sleR UE[O }}, § ~~( 9)504*0\1) E
- Here [ }9 is the complex or the real (0, 2) :nterpolatlon functor. The proof

of (2.7) follows from [54], Theorem 342 p. 275

Remark 2.5. It 15 easy o’ see: - that ‘Wsl e R‘ for fixed s and

(}
W 24 seR) for ﬁxed o arg. mterpolatlon sedles but the corresponding

(qemt) groups do not commuté, so that (2.6) is indeéd nontrivial.
- On the sem:-ax:s R* we have the foliowmg reIatncm between the

'wexghted Soboiev spaces WS(R+) dnd the Sobolev spaces HS(R+) of

H* (R, )Hunctions po‘;seqsmg an" extens:on by 0 on. R.. m H‘(R}. (See
-Deﬂnmon 1) - : . o '

LE‘MMA 2.6, Let xelCqy [0 eo) Then the mappmg Uk yu s continuous
Jrom WO(R+) in H*(R,J ‘and from ﬁ‘(lh} in WO(R+) jor 5 = 0. This means
" that the norms of WO (R+) and IP(R+} are eqmva[ent on compact intervals.

For 3 <0 the. mappmg ur—»xu is commuom from Wg (R+) in H‘(R+) and

from H(R,} in WJ{RU
The proof of the lemma follows directiy from [543, (432/7) or from
Thm. 118, p. 69 in [36] by interpolation and duality.
Now we want to’ describe the Sobolev- spaces H*(I") and HS(I" W) as
defined in (1.1). To th;s end us¢ a partltwn of umty ()51,. . ¥y) with the
following propert:es . e '

(2.8) Ty i the restriction of a C‘-”(Rz)—function to I,
yEl m a nelghbourhood of “the :vertex 4 and
Suppr¢F’ ' ‘t}uﬁH }
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For ¢very function u on I' we then have

J
(2.9) R ) W SR

so that y; u is the "local representation” of u at ;. Each x;-u has its support
on the angle I'u{t;} UTI*. By means of an affine . transformation of
vartables this angie can be considered as a part of an infinite angle '/ with
sides I'. =¢". R, corleqp{)ndmg to IV and I, =R, correspondmg, to
iy

Thus A, u can be considered ‘in a natural Wdy as a funotion on I' and
thus also as a pair ({,(Ju)_ (xju)*) of functions on R,. We will use these
natural identifications ‘without further- mention  if no confusion is possible.

.Im‘

g

7wy o

Besides the decom'p_ositiqn (2.9). we can also consider. the restriction of u to
each T¥ and in this way obtain a natural identification of functions on: I and
J-tuples of functions on the segments I, j=1, ..., J. With these identifi-
cations we have the foiiowmg deﬁcrlptlon of H*(F) ' "

me 2.7 (Grismrd [16], {20], §1, 52 {153;
(;) For |q| z 4 H (r) H H‘(P) '

(u) For 56{2, 3) H‘(F)~w ue H H*(F’)] (xJu) eH‘(R+) and

J

(x, u}+ (;‘1 u) eﬁ (R G=1,.., 0}

”u“”\.uj
4

H(_z,n_u_h T ,+H(/,,u) lhm ,+H(xju)+ GG Mpsip

(iii)"Fo_i.'_S_/ 1 HS{F)M fue H H‘{FJ{ (,gju) @H‘(fh) and

() (0 = (3;4)- (0) for m; # n and
_ () (. e (R for w; = n}.
CoOROLLARY: 28 Let rs—~>z(r) re[O L] be the parametrization of T'y by

the are length. Then z*. H*(I';) > H*[0, L] defined by =*f = foz is an
isomorphism for | s1 < 3/2 HS(I"' “Y does not depend on me(() 2n for ]s] f‘3/2

'Nl
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Proof.. If [0 ijUJ ie IJ:Z(JJ,) then for 0< q<"§/2'

i=1

Hﬁ [0, L} = H H*(J}) is the Subspdce which is characterized by compatibility

'condrtrons cqu:valent to those stated in (1) and (n) of the ]emmd
no conditions for 0 < <s < 1/2
contmuxty on d“ of 10, Ll for 1/2 < 8 < 3/2 dnd for s = 1/2

f’fk(fk“*“f)“’“fﬂ 1("&"“1)1 *’V'<GO W_h_ere fL, me,JHk k%vi

‘Ek -»Jk ﬁJ,H.;, and g > 0 is smdil enough

. The condition for s = 1/2 just means. {x, 1), — (,(k u).. eH”Z(R ) for fr=z%u.
For —3/2 < s < 0-the result then foliows by duality, because the resuit
for 0<s <3/2 s obwously also trug for the H‘-spaces B :

Remark 29. For s = 3/2, H‘[{) L] contains more compatlbzlxty con-

ditions than H* (£') if at least one angle in I'; differs from n, For w; = n and

52 3/2 there are compatibility conditions on the derwdtwes too, cf (ii1) of

the lemma. For s > 1/2 and w; % n the conditions in (1) or equwatcntly in
{iii) of the lemma Just mean thc, contmmty of u at t.

.Cororrary 2.10.. The spacex H (F) anaf H‘( U fm ls*[ < 3/2 have the :

_ mterpo!atzon proper ty, ie,
C[HO(T, H*l(r )},,~H(F} . e
{H“’(rg) (I ;)332 HS(FI) (963[0 5 HENS 516(-—21 z} 5= 051+(1— M so)- -
' Proo/ The spaces H*[0, L] and g [0 L} hdve thw -property. &
Lemma 211 (Grisvard [201, msz [16], (171, [19], or [48}}

{iy The mappjn g u H,,;,u
on

s ‘“"Je‘ff‘we from H“‘”(Q) onto n B r;}
. o . 5
fOrS>{zf(g¢?tU__l A : |
Py
(11)_.Tize' mappmg “H(ul - T,f

) is. Sﬁw'jecriue- Jrom H&Y .‘.’2(52) onio the
v
subspace of H*(I" )%, H H” 1(Ff) whlch is (haraae: zzed hy rhe wndmom
Sy S
() 0=~ i W and

( 5“) (Q)Ww 5.4 (xju) © i wj=70 and b for 532,
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and _ :
duN  d T ' T
(t(j ,: )1"{“'{3;(}{]11):;:6!’1 (R+): W 5 j 3 o 5
or -8 <
(2.10 317: 2 2
2

(For 1 < s < 3/2 there are no conditions, and for 3]2 < 8 < 5/2 the two sets of
conditions coincide.)
Lemma 2,12 Por 0<s <3/2 -
(1) H‘(F") = {u w{u”, z-s+)eH (R wu,r eH (RJf)
() H™(r) = {u=(u_, +)EH *(R. )2| u_+u, e H (R},
F mfhermme the mappmg _ )
(211) ' D (11_,u+ H(u +u+, ~u)
is an isomorphism -
D B F‘")-»H“‘(Rgxﬁ (R.) and ..
D Hos(roy= g~ R HTHR).

Proaf {1} i$-a simpie consequencc of Lemma 2.7 (ii), cf. [16] This means
that - D H‘(F") +H‘(R4)><H‘(R%) is an 1som0rphism If we .note - that

H? (I = H (I} = [H” F”)] md D' = D, the result (i} follows by takmg
adjoints, whence. a
(212l ~ Eld)++¢ u,;. i ,+nr/> qs uﬁ e ®

~2 2 In order to show:the mappmg propert:es of the mﬁegrdl operators in

syster_n (1.20y on " we. ﬁrst investigate. the operators. on the reference angle
I, .to which the general case will then be reduced by localization.

 The natural identification” of funcuons on I ‘with ‘pairs ‘of functions

“on R, induces a -natural identification of_ integral operators on I with
(2 x 2) matrices on- mtegrai operdtors on R+ We dcnote th:s correspondence

by =, . .
_ in this way for thc operator V of the smgle idyct potent:al we hdvc

l’V V+nJ_
".-.V.*—-: BE
S AP

where for $eCg i oo)

"V++_¢_(x}__“~>—':-_'~'~=' loglx ylcb(y)dy
"-'_'Igs : Iﬁn x|,
L E -iogycﬁ(y)dy—-—_-jlogIw*iqb(y)dy '
L : o R R A
B A
o h ()
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| 3 1 | i
(2.13) . ¢(’C} J logix el @(y)dy
. o : .

X ool i) dy =14V, ()

= ch)'«lj iog 1—
0.

. ] V+;:V_+; Vuf.x-V++" o )
For the operator K of the double layer potential we have R
' WK K. T
K —*:[ ' K.+ J -'.'Wlth K= K;ur = 0 ;
Aoy By e :

because of the geometric mierpletauon of the double }dyer potentml by the
chdnge of the angle (cf (1.17)). ' :

o . . : L
K- ¢’(X) = -*fim (w;,;; )d»{y)dy =3 chﬁ(x)

T o) \xe' -

214 ' e . _

( 1 ) K_+MK1A$'K'¢0'-'.'

In short we have on F‘“‘ '

1t+"V0' v, Ko Ko|
il _,(.uVE},'_. Kuoﬁ-

The decomposumn of V. is made in such a way that the kernels of the

(215 TR 7

operatorq Vo,V afe homogeneous functions of- dogree 0,50 ‘that the Mellin.

transform’ will convert' thern'into mult;phcat:on operators (up to'a shift). For
the double layer: potentidl K “this Mellm tmnsform ‘Was dlso calcu}dted by
Fabes, Jodeit, and Lewis in [11} R : S

CLewma 2.03. (;) Let qSeCO [0, ). Then o o

o
--Voqswx_vo-(w)__»ff_i):m;‘?»‘s{sni{f;f pa-p

(2.16) o R cosh{r—m)4 . %.Imké((), .
Vo) = T iy = X M EE Ay .

A smh T4,
(n) Let r;be(}, {0, oo) Then

' th(n a))/

A K6 = K, () i = -2 F0) (mae-1,1),

sinh i _
Proof. We have to use the formiula (see, e.g., (9], [30]

- . —i}_rd . _L_}.(m r;.. _ S
J AR T (@e(0;2%), Im 2&(—1, O).

. (218) PRALL N Slllh )

_ Here
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We use the definition of the Mellin transform via the Fourier transform and
then the convolution theorem for the Fourier transform.
For K, we obtain

L s]

K.,,,qi(e".'}':% j.lm(m)ﬁb(e“’)e“’dﬂc

— a0

.102.1-_ '_I e
;'“ECE J (e:ﬁ"—t}ﬂmmife*(ihr}fimwl)d_)(e )d‘t

= J_‘f(.f..-*r)qﬁ(e"‘).dr,

where {by (2.18))

: _ @ 1 . .e,{(wAn] ) em,l(tu"r:)
Ff (D)= j e (e = }j{( Tsinhwi ' sinh nz)
sinh(n: - co) A

LR, (Imde(~1,0).
-'sinh A . R

From 1m(1/(e~*+'w - 1))~Im(i/(e“_+“” )) it follows that f is an even
. function, -and thus. Ff{4) = K, () also for Im 4e(0, 1). By the convolution

theorem we_have K‘\qb(x) Ff(/l) $(A), whence (2.17). For ¥, we write

(.,¢>(e“=)—-~~ i iogu-— e ‘“’icf)(e*‘)é“‘drm ff(t—r)g(r)

~ Ry

Fg(l) T ?““' ”’cb(é“r)dfw(!)(ﬂut}

_..m

' and by mtegmtnon by parts and the use of (2 18) - ..:

o .

R
_cosh=ald p o) for Imde(-1,0).
A sinh nd SR A

13 - Banach Center Publications 15
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This gives (2.16) if we notice that ¥y is a special c_ase: of V,. &
| CorOLLARY 2.14.

. o ‘ '
Vo and V., {%fé(R+)—> W@“(Rf) for s <%
K,: W(R) -~ W3R, Jor  se(~43)

are continuous. _ . : - |
. Proof. This follows immediately, from the Parseval equation (2.4) and the
fact that |V,()] ~ 1AL+]4) on each line Im A =he(—1,0) and K (1)
bounded on Im i = he{—1, 1). For example, R
1%, ll% ~ AT PP dA

WitlRyY  ma=stag2

<C [ (HAFIPGA—iPdl
1m1§s+1/2

~ UGN AR

CkmAms— 12 . ;

~ldlly  om

S LR -

Now we can prbife the co'n_tin'uity of the operators ¥ andS K mﬁ:l?e
Sobolev spaces without weights. The exact distinctiop between H __g__nd_ _H'. is
crucial for the proof of the compatibility conditions for_t.he_ir.nag(_::qf t_h_e

.LEMMA 2.15.. Let yeCg[0; o) with supp(l—yx) (0, o0). Then the
mapping; I o : .; ST : PR
| w4 Vg FER)—~H (R for  se(=3/2,1/2);

g+ Vo) - AR - HTH(RL) Sfor _ se(—3/2, 1/2);
1cr-f+x(V0w—V“;)x':'H“(R;)_-A-ﬁ"’”(ﬂ;) | for - se(-3/2, 1/2);
LR PRY e g s
o rRo { . H(R)-HPR) T
are CORLinUOUS. | I ST
Proof. Let A: ur>y(I+V,)yu be defined on L*(R,). We first Sh()\f\-’ the
continuity of A from A*(R,)—H*'(R,) for sel0, 1/2): ur>I(xu) is by
(2.13) a continuous linear functional on H(R,) for aﬁ' § > ﬁ:nl/2. {But
x(x)-log x¢ HY2(R,)). So ursy-1(zu): H'(R.)— H!(R,) is continuous fqr
s> —1/2 and all t. By Corollary 2.14 and the local equivalence of norms in

_ H* and I%’,;;' (Lemma 2.6) x¥, 1 _ﬁ"(R;r)ﬁﬁt‘*“_‘{RJ,) is continuous for
sef0 1/2')‘. Thué ﬁ:'ﬁ‘(R;)wH*H(RQ is ‘continuous for se[0, 1/2).
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Now A is a self-adjoint operator in I?(R.). The adjoint operator 4’ is
continuous from A5~ (R,) into H™5(R,) (0 <5 < 1/2) and coincides on the
dense subspace I*(R,) with A. Therefore we can use interpolation and
obtain for every 0<s < 1/2 and &[0, 1]; -

A: TR, H Y (R)1—~ [P Y(R,), H*(R,)], is continuous, By
the interpolation property of the spaces H(R.) and A*(R,) we obtain A4
ﬁ'(RQ}» H'*Y(R) continuous ~ for " all re[~s—1,s], hence for all

re U —[s—1,s1=(-3/2,1/2. ~

':'0€S<l[2- _ L . _ - :.

Let Ag: wrsy(I+ Vo) gu. Then:-we have 4y—A4: ursy(Vo— V¥, )yu and
Ag—A 15 self-adjoint, ' U :

As yViox: H'(R)— A" (R,) is continuous for ref0, 1/2), we get
Ao—A: H'(R,)=H (R}~ H*'(R,) cont. for re[0, 1/2). By taking ad-
joints we obtain . _ _

S A0w=-',4':"H“*"‘(_Rd'-»_ﬁ'""(f{'J ‘cont. for ref0, 1/2).
By interpolation we obtain as above .

Ao—A: HYR ) — ﬁs_*_l(RqJ; cont. for se~r—1, .

and all re[0, 1/2), and thus for all se(—3/2, 1/2).

Now let B: urs> K, yu be defined on L2(R.). From the ‘equivalence of
norms and Corollary 2.10 we know that B: H*(R,) - A*(R.) is continuous
for se{—1/2,3/2). For se{~1/2, 1/2y the spacés- H*(R,) and H*(R,) are
identical. Thereflore, if we prove that B: H*(R,)— H*(R.,) is continuous for
se(l1/2, 3/2), then the result for the whole range will follow by interpolation.
Thus fet se(1/2, 3/2). Choose ¢& Cy [0, o) with supp(1 — ) < (0, o0): Then
for ue H'(R,) we have the. decomposition .. .- R
(.19 0w =u(0) ¢y with' uge AH(RLY.

where wr+u(0) gz H2(R,) - C§ [0, c0) is continuous. Then =
o Bu=u(©B+Bu.
S We know that ursBuy: H'(R,)~ F(R,), and hence into HY(R, ), is
- continuous. It remains to show that Bde H*(R.), where B¢ = yK_ yb. Now
LA alonsomeinterval 1[0,.¢]. Let g, be the characteristic function of this

interval. Then xé = xo+(x¢ = y,). The function y¢—y, vanishes on {0, ¢].

Therefore K., (1~ xo)e C*10, w). Furthermore

For fixed @ this is continuous on '{0,'06}.'_'The_ dé_riv_ativ_e

S d o 1 o ) . im.
gz K xe(x) = - Im(m%ﬂ__.__)z 1 {m(+)
o dx Tooo\XeT—& X is xXe' g
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is analytic in a neighbourhood of [0, s0). Thus K, 7oe C*[0, x) and the
proof is complete. = - ' o

Remark 2.16. (i) The range of the indices s for which the operators in the
lemma are continuous cannot be extended in general. More information
concerning this question will follow from the results in §4.  ~

(ii) The number K, xu(0) depends only on u(0) and w, as can be seen
from the following: Let uy, uye H(R:) (s > 1/2) with 1, (0) = u,(0). Then
u, —u,e H*(R:) and thus K, x{u,—uy)e W(‘;“'(R{)..Th‘is. means especially
Ko (i, —u,)(0) = 0, whence K., xity = K, 7t In §4 it follows by the cal-
culus of residues that o Lo
: C ' w—7

Ko@) ="""u(0).

Having now the necessary information about the locai_ized operatoré, we
are in a position to prove the global continuity of our system of integral
operators: _ . i ’ s REE

TueorREM 2.17, (i) Let oy be defined as in (1.20); then

g B XA S BT B
_is._t}qr_zti;_zuou& for s'e_(_——_i/Z,' 3/2).... ._ _ . L
(i) Let %, be'defined as_ in (1.20); then

g B xRN S BT )BT
is - continuous for se(~1/2,3/2): B
Proof. From definition (1.19) it is clear -that the result concerning - #,
follows from that on .o/ by interchanging I'y and 'y, The proof for. .o/,
proceeds as follows: e e o
We use a partition of unity {yi j=1, ..., J} with the properties (2.8)
and decompose B S

- . . : J :
. L o Gk 1 : - .

" By Lemma 2.7 we have to show that for fixed J and cach k=1,..,J
the operator ¥; /o %, maps the Sobolev spaces on I'™* onto the correspond-
ing spaces on I/ continuously. For this purpose we show that (¢ .7 % U)
 is contained on the proper Sobolev. spaces in R, and the. compatibility
conditions, - as 'spe{:iﬁed-ih Lemma 2.7, are.satisfied. The continuity then
foliows trivially: s e '

We have to distinguish. three cases:
NORET R ' o
(B i—kb=1;
A i=k
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() Here supp y; supp 2, = @. Now all integral operators in .o/, have
kernels k(z, {} which are C* for z # {. This implies that y; ./, x, U belongs
to C*(IN and thus is contained in all Sobolev spaces. '

{(B) Here supp gy msupp y =:S < o TI*"', Now outside S we have
Lo UeC™ {as in case (a)). From case (y) we will see that o/yx U is
contained in appropriate Sobolev spaces on all of I u I*" whence on
neighbourhood of §. So y; /s 4 U is contained in the correct space.

“(y} For the investigation of “y, o/, x U wé have to distinguish three
cases: “Dirichlet”, “Neumann”, and “mixed” corners. '

(D) This means keD or I*OI**' < r,. So supp o= and thus

| 14Ky, —Viy 0 0
Ik o Xk == K 2 ' JXR:t.
] — Ky, Vil_ O Viixl

reduces to the operator z, ¥, on I'*. By (2.15) this operator corréspoﬁdé'to
the (2 x 2)-matrix - : N

i1 - Y V.,
1 1 K .ék ‘{k _}/;,k. VD )

¥rooon Ry,

For further reference, we denoté this local correspondence by

| o - R
2.21 : ol = ] 1] o |
(2.21) _ _ =f_fo (m[l 1J+[Vw5 VO-J
- R N "
Similarly x, U :[ J=[ ”k . Therefore we have (o she v Wy
' WU | | L, | Therefore we have to show that s V.

HY (1) - H(I') is continuous for se(~ 1/2, 3/2). By Lemma 2.12, this is
equivalent to T AR : - :

gD L BRI R) S RO X PR,
continuous for se(=1/2, 3/2); Note that for |s| < [/2 H* = @, -

' ' j___-..-_._'_':_p’r.'has__ti}ee_'mz_itr_i'x.:___re'pr_esei_]'ta_tién e

- -.'.":_.'.'D_:; 1.1 i, .
(222 Dy Vi D' = 07 T ;
RN Xk. Xk Xk 0 — e o

Lémma:. 2:11  gives - 3, (21+ V(,.*k Vo iz H (R~ H Y (R, yeont. for se

Wy

e(=3/2, Y2 and g (Vo ¥, ) s H(R,) — 1 (R Jcont. for se(—3/2, 1/2).

This is just the desired result.
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(N) This means ke N or I*uI**!' <= I,. We have supp x, < I', and
}.“f“KZz o1 o . o - . -
6 ol reduces to i (1+K)yg, on T7K

By (2.13) this corresponds to

1 Kwk SR
Xk K. 1 Xp

Xk o X = Xk[

Bk

ie.,

(2.23) ot :”""[K | _I*J.___ |

wk

U v .
We have ka [/k ] [(xk )- J, and s0_we have to show that
: 0k v)+

(1K) e H‘(F""‘)AHS( “¥) continuous for se(m1/2 3/2)
or '
ka{I+K)/kD E H‘(R )xﬁ‘(R+)HH5(R )xH“(RJr)
_ - continwous for se{~4; 3).
: o w [1+K 0
(2249 ..ka(1.+K)ka“-““ Xk[ +0 B J,&‘

Lemma 2.11 gives the contmulty of x,‘(1+K(0k)xk in H*‘(RQ and of
Xl = Ko ) e in ¥ (R,) as - desired. .

{M) Here we agdm have to dlstmgu:sh two. cases ndmely
{M) R : . Tk C*Fl, Iﬂk+1.('_:1ﬂ2’ :
Mj) . rfcl,, I*™er, _
We shall investigate only the first case (M), because the second case results

from the first one by a single renumbermg _
By our natural correspondence with (2 x 2)- mdtraces on % We have

1+ Ky ~ Vi, ~ | ~K+W T I+v, -K,
w| Xx = : = % * s
: Kzz Vil B ”“"V—+ I+K++ “:”Vwk 1

| . T av, K,

. ] W)
We have to show that '

4V, —Ku ]
x-[j b 1.0"] 75”1(R+)xﬁs(R+)-’H‘(R+)2 (se(=4 ),

()k
is continuous. Due to Lemma 2.15, this is true‘; I

e i
;_-‘-__jcontmuous because [
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Remark 2.18. The proof shows that for ke D the compatibility conditions
for /g U at 1, are always satisfied, although y need not be continuous. For
ke N, the compat;blhty condltlons for oy U at tk hold dnd only if those for
v are satisfied.: S :

2.3. Because the boundary value problem (P) is strongly elliptic, one
could expect that the equivalent system of integral equations (1.20) is also
strongly elliptic in some sense. For smooth curves it was shown in [58] that
this is the case in the sense of elliptic pseudodifferential operators on I'. This
was then used to prove convergence for the Galerkin dpprox1manon

- procedure.

In the case of a poiygon rit tu; ns: out that thc opemtor g of (1 20) s

strogly elliptic in the space H'/2(I",) x B '2(")) of the “energy norm™, which

corresponds to the space of the variational formulation (1.9) of the problé'm‘
(P). In the space L*(I",) x #7Y2(I"}), which belongs to the standard Galerkin
procedure with boundary clements, the operator .o/, however is in sharp
contrast to the casé of 'a smooth boundary, not even continuous. {The
operator ‘K, does not map L*(I';) continuously into H Y2

The way out this dilemma is to replace system (1.20) by an equivalent
system of mtegrdl equations which is obtained from (1.20} by some kind of
the Gauss elimenation procedure. The new operator o on the left-hand side
of this equation will then indeed be continuous on I*(I') xﬁ V() and

- strongly elliptic, ie., will satisfy a Gérding mequaltty

The modified system: whlch ‘we shall use for the Galerkin procedure is

10
obtdmed from (1.20) by muinpllcanon from the left. by [I\ 1J This glves
21

(2.26) ) ;;._35(; .

- with .
. {227)

szKzz Vu Kzz Viz B UK K Ky Vi + KV
Thi‘i new system 1s equwalent to the ongmai one as soon as Kz, is

0
_ I:} will then be an lsomorphlsm This is the case,
21 . o ) o

. _ [
-eg, m HS(FZ}XH*(FQ (se -1/2 3/2) by Theorem 2. 17 Instead of [ O]

. T 0 .
one couId also use [ ] where ,{Ms: cg (ﬂ is any functmn 1dentlcal
Kol

to 1 near iz [or' je M. This wouid mean - that ;ﬂo is modified only in-a

netghbourhood of the ““mixed” corners. If o;=n for all jeM, then the
modification is not .necessary, i.e, we ¢an take o=y
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TheorEM 2.19. The operator
o LZ(F}xH ”Z(FHLZ(F)XHW(F)

is continuous and satisfies.a Garding inequality, ie., there exists a'y >. 0 such
that for all U

228 U, U>L;(r2-,_' > PN 20 - 172y KU U)
where | | .

(AU, U),zm <(1+K22}U“V12‘f1 U>12(12,,<L2“2,+ B
+<(K2;K22)U+(Vu K21V12)‘/f l'[’>111/2(ﬂxﬁ 1/2(“,
and s SRR

|EU”,2[, XA 1;2“1, ”0”12(, }+”‘!’Hg U2y
k is a compact bzlmear form on LZ(Fz)xﬁ v, ) wath S
where T: () < A “2(1‘)-+H(-_2}>'<

(229 k(U, U)=<TU, U
Coe Lo . XHUZ(I ) IS Lonipa(,f foi O ;/2

ﬂm’

' P;ooj From Theorem 2.17 we l_mow the contmuxty propertlcs of the
operators 14+ K,,: LZ(FZ)»Lz(I‘z) '

230 - C:= Vi-lszfViz ﬁ“‘”(l‘)%H-"z(T}

and Vy,: “1p2 , )w)Lz(I“ ) where the latter is compact by the - compact-
ness of the embedding HY*(I,) o L2(I'3).
- Thus for the continuity of .« we only have to show that

(2.31) K, Kyp: L3(I,) — HY2(I')) is continuous.
For this. purpose we choose a partition of unity {x;} as in (2.8) and write

K, K5y -T_—'ZKanKszk- o

For the mdlvnduai terms in thiS sum we have severai cases to constder
“1If jeD then K;lxj-m()
. I jeN then K,y I, )-»)C‘”(Fl) contmuously (cf {2 in the proof
of Theorem 2.17.). :
- HjeM and [k—jl > 1 then X K22 xk 12 (I"z) —+C°°(I 2)cont. and ﬁnaliy:
If k=jeM then x; Ky 4 = 0 (see (2.14)).
W k—f=1 then also ;JKzz,ck L(Fz) " (Fz) as can be beerx by a
combination of the preceding two. cases: :

What we have actually shown is that even Ky, Kzz LZ(FZ) ——>C°°(F ) is

continuous, so that K,y 'Ky L2(I;) - HY*(I'}) is compact.
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Also, Vi, H V(I — I2(I') is seen to be compact. Hence for the
proof of inequality (2.28) it is sufficient to show the two incqualities

(232 K20, 02420 2 zuvn,uz(,z,'—-kl (v, v)

w;th ky compact on LZ(F ,), and

Q3 (U g ep g = PG iy~ )

with k, compact on H '2(I)).

Again, we use a partition of umty as in (2 8) to reduce the g[obdl
inequalities to local ones, i.e, inequalities (2.29), (2.30) for the individual terms
el gt k=1, ... J)' instead 'of v, ¥. Lemma 2.20 below will justify this
reduction.

For i mequd lity {2. 32) we have two cases: keN dnd keM For keM we
hdve <K22xkv xkv> =0, so.

<(1+K22)1.’k” XLU> 2= |§,&’kUI§,2

For ke N we take the niatural identification of : ¥, v with a function on the
reference angle I'’, w = o, and use form (2.15) of K,,. We want to show
that the operator K|, is a contraction:

(2:34) T LY

in order to obtain

Limy y = <1
1+ Kpa) v, 20> = e vl + <K, (e 0) -, (e 0)2 >+ Ko, () s (o)
' = e ol —a 0o o)1 ot o) 4 100 2) G o) - 11

| | (<H(m) & +|r(xkv)+n2~*|mg2}
><1-~ Mol

For (2.34) we tdke qﬁeC&’(O oo) and use the Mellin trdnsform (217 of K, ¢
together with Pdrsevcii’s equatlon (24) :

1 | smh{n w}ﬁ
K, 4)”;_2“, ) ﬁ j : “—;ﬁﬂnTm s 4q ”(P“Lzm )
: fmi=—1f2

. ' smh{nw—m)l . . 1

th g:= - e We A m= g T w2l
W [m_,lsz_uP;,rz Smh Tcl N © ha‘_re__‘ﬁlth 4 _ .c.ru}jn,_ ’ 2 _

. | b (o

Isinh(x __C}?)ﬂiz _ Egshz 0 (1) — cos? 7 (71~ o) .cos o {n— (u) cos? ;

[sinh mwAj? cosh?on—cos? T : coshz o

RS
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‘Now this is maximal for ¢ =0, and thus . For ke D we again use the density arguments for Lemma 2.22, so that
o o . _ - we may assume that
: = . | _

(2-35) o g = s <1 _ . f = (b, b)), where ¢, satisly (2.37).
- : : - S : . Here the local form of C is o '

"~ This proves (2.34) and ﬁndIIy {2.32). : : “a i1 ¥, V.o

For {2. 33) we again have two cases: keD and keM For keM we Wl" o C=p e

show : L _ T S B Yot

(2.36) (Ccp, ‘P)J,Zm ) Z ,’Hcf)EiH Uz(n } . _ . _ and with the operator D = E iJ we ha?e by (2.22)
for all o R - e [2O] [Verv, o
(237 © peCP©, o) with (/)(—:)MO»«'——(/)(—r} [ o 00 0 | V-V,

_ : : o Therefore we get -
By Lemma 2.22 the set of such functions in dense in A~ '”2(' ), and so
(2.36) will hold for all pc A" l":"(RJr) especnaify for y,¢. The operator C 2 Vot V.,
from (2.30) now has the from - . _ e <D‘] [ otV

: . : . _0. VG‘ ]Dﬁﬁ‘ -¢>Hll2{1ﬂ2)>.<téi. '11.’2(!10)' '
e m(lfl{o) .K (z+!<,,} | I S .____1:<[_Ve+'%f 0 ]M D¢> _—
Now | T T . _— S . o : 2 0 Vo w . HUZ“m]xﬂ IIZU;:)}
(2.38.} (}.;.%J‘;(-.—i}m J(_it)émih(b(ew;)dthmﬂ_ A . STy | {<(VO+K0)(¢ +¢+} b +¢’+>H1!2(R yxH™ 112{n+)+
. _ o . o . +<{V0 u,)((,f) =¢i) ¢ ¢+>H”2(n+axﬁ“il2m+)}

<C¢a ¢>H”z(1‘°) *x 8~ H2roy

R R SRR o where we have used (2. 11} in Lemma 2 12. By the Mellin transformatlon we
_ij log x- ¢ (x)dx, IRUTRt - ' have . .
P4 . R o . . ' <C§b ¢>H1]2{rw)xg 1/2“m, _ j i:#: (ﬂ'ﬁb{h(ﬁ_l)“f“(b (3“*1”2
: . Lo : Imi=0 -
so that ld) 0. Thus Cqb —(VO Km Vw)qb and we can use the Mellin trans- E o S o
form and Parseval's equation to obtain- : - by R S +‘u2(ﬂ”¢ (’1—’) ‘f’** Gl }d"
: L _ ' . . whete gy ,(4) = V() + ¥, (1), hence .
239) Co, ) = - CdGA-peHdr . oo cosh mddcosh(m—w)A L44 . -
39 € - J CPR-DER e (i-w) *‘]ﬁ ek
tmd =~ 12 _ T S A sinh A S 7 _
o : o _ : IR . cosh 74— -cosh(n—w) i i :
=— | € A—i)2dA, . S )= DO PR TOIA _
" j _(y}"“ il | 2 BN 2 0) A sinh A Ty “eR
' fmd =0 ' Therefore " CoT
where we have deformed the path of mtegratxon due to the analyticity and s ] +1A 1414 '
rap:d decay of the ‘integrand. Here from (2. 14) (2.15) we get B Ch, >~ f thz §¢+(A ;)+¢ ()nw:}izdl+

. smh(2:rt )4 cosh wd  L+]4| TR (B T mke

(240) o C(}.) 2 Sinh? IIA ."v' ““lz-l"z** (AE R)’

- '.-E '.;; -..A :
+ o f T |- D= (P di.
. By msertmg {2 4{)) mto (2 39) and using (2.6) we obtain (2.36) for some y > 0, T L .

fnd=—1
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o By ‘Corollary . 24, the first member on the right-hand side is
z Ml +o- ”H 1/2(R+), -

and by Lemma 22 the second mteglal is

~ o~ ”2 == ”n Y2r )

AR,
by the loc&l equwdlence of n%rms Thus ﬁmaII

Cd, >z yillds +</L|l?..; uzm' )+“qu ““;-"lerl/z(h,}
:?"“DQf’Hg 1/2(3 ye ™ UAR ) |”|7 1420y
by (2 12} m o "

LemMma 2.20. (1) Eet isf < 3/2 and A fI""{I’)HH‘“{f’)_' be a bounded
operator with

(0) <Ay By ssir D Blhgeey +hs s ) for all peCE () with S,

a compact subset of I ltJ}uFJ‘” (i—l J) where y; >0 and the
compact bilinear form k; depends only on §;.

(b) For ¢y, ¢, C*(I') with ¢y, = O the operator ¢y A, Is compact,
and for ¢, e C(I) wnh supp ¥ < I for some j the operator y (A¢ — A}
is compact.

Then there exists a y > 0. and a compact bilinear form k on H™*(I') with
(Au, D iy sy 2 TG ﬁm+k(u,' W) for all we H(I).
(ii) The operators C: H™Y2(I'y » HY3(T) and K: 1}(I') = I2(I') have the
property (b) above.
Proof: (i) Choose a. partition. of unity |y} as in (2.8) and -define

Sj = supp ;- We may assume that /J, V//JeC“ Now il ke H™¥(I) then
/JueH *(8;).. Obviously, the inequality in (a) holds by contmu;iy for all
e H*(S)), whence for y;ju. Thus for all j=1,...,J:.

(2'41) <AXJ U, Xju>_HS{r}xH—.S”') = '},_J iix.] u;IHS([]+k}(Xjuv Xj u)’
Let j# k. For |j—kj =1 the operator y; A4y, is compact, and so
(A, X4 gsr <y 18 @ compact bilinear form. So let | — k| = 1, for

simplicity k =j+1. Choose e Cy(I¥*") with =1 on supp{(y; xJ-
Then the four operators

W (AT — T A % (L= (A~ X Ay,

LW AT~ DAL= T - (AL — T A (1 =) ik
are all compact by assumption (b). (The equation {1 —y)y;z =0 implies
the compdcmess of the last three operators) By summation we find that

x Al— Kﬂfk A7, is compact. Stmilarly £ I Ak — X T A/J 7¢, and therefore
XAt ,(J, T AZ; Ti» are compact operators. :

betause we have .
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Thus we obtain
(242) {Agu, i) = Oty At wy = AL T, T o> + K (s 1)
Z 7 1% T U§|i’7<~—s(,ﬁ“kj(fj Tty T Tou)-- I (u, w),
because supp 7,7, < supp x; = ;- Adding (2.41) and (2.42), we obtain

—k[=1

<Au zi\)ff‘(])xﬂ EU)/ I,IZH;Y}M“H S”-) Z ”zjfkuliims‘“)}‘i-k(us M)
b ' ‘

N Z !Ixjullfr‘?m%wk(u, )

i=

> sl

J. .
W s(,',\ PR - 5(-,, < Y 4yl -y )

Jkt' gk

- '""J Z “yJu”H 5‘(;')

{u) Let qb}, q‘)z, 4), dnd ql/ be as in dssumpilon (b) Then for 4 =K or A
=C the .operator ¢, Ad, has a C™-kernel and is therefore compact, whereas
in (A —pAye the kernel is different from O only on the straight line

~segment I, so that we can use the corresponding comp&ctness result (which

is well known) for pscudodifferential operators on R & "

Remark 2.21. The form {2.29) of the compact perturbatlom is obvious
from the above constructions. Most of them are even of order —oo, and the
others (namely those of the form l,b (A(,b (;SA)wj/ for A = C) are at least of order

.— 1,

o LEMMa 222,
M {ueCS‘?{O, w)| d{--i) =0 z-—fﬁ(wi)} is dense in H™ '3 (R.).
A

Proof. By (2.38) we have for ue Cg (0, o)

e o S
c—;-;—tﬁ(—f) = wj log xu(x)dx and  @(~i)= f“(x)"x'

Now neither log x nor qb with ¢ = I is contained in H”Z(R%) and so the
linear functionals [: ur— f log xu{x)dx and fy: urs [ u(x)dx are unbounded
(1B 4]
in the norm of A~ 1’Z(R ) on the dense 811b<;pdce C§(0, o), Therefore M,
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= fue CF(0, oo)llu = 0} is dense in CF(0, ) and I, is unbounded on M,,

and thus M = {ue M| l1 U= 01 is dense in Ml, whence in CP(0, oo) and so
in A"Y%(R,). =

. Remark 2.23. This density was used in. a similar context in [41], § XI,
6.4, in weighted I7 -spaces. :

THEOREM 2.24. The operator
shy HY(I, )xﬁ RE }—»H”z(f’ )xH"z(I‘!)

satisfies a Gdrding inequality, i.e., there is a > 0 and a compact bilinear form
k on HY(y) < H™Y2(1')) with o
(243) (o U, UD ypp 2 }’Hulfﬂuz(,z}xg Y2 ~k(U, U)
Jor all Ue HY(I'yyx H™Y2(I)), where (-, > 12 is a scalar product belong-
ing to a norm which is equivalent to the norm il [§H”2“ )+§] Iszu"), in short:

<$’foU U>x>uz <(1+K22)U“ Vn‘!’ U>51/2(r2,xﬂ1;2(,2)+

'i“< Ky o+ Vi, '#)Hi/z(,!,xg 1/2”1,

Proof By using Lemma 2.20, it is sufficient to' prove only the localized
versions of (2.43). _ _

If ke D then we have C = —-(D, V. and so we can use the corresponding

resuit of Theorem 2 19 R '

: U

For keN We have &f’o (N [K

$.eCHO, o0) and Fu(~) = by (—)=0

(2.44) . <(1+K22}€b D2y wmtizge; :

' o~ <D(E+Kzz)¢’ Dd’>m1n’2m+)xﬂli2(a )}2 - - :
-”"’"<(1+Kw}(¢+ +é- ) b ‘“*"(l" >Hi/2m )x,,,uzm,*‘”

+{{(I=K NP ), ¢ — g, A 2R,y

Here we have used (2.24) and Lemma 2.12.
‘For the first member on the rxght hand sndc we use the decompoc;mon
s oz = >L2”z+< >1/2’ Where by Lemma 23
@ ‘//>1/2 wi f (wh coth A~ 1) $ A F D dl.
:ma 0 o P
For ((I«H( )(¢a++¢ byt >L2(R+M2m , wé use Theorem 2.19, and
fm' <(I+Kw)(¢+ +¢.), by +¢ D12 as: well as for

<(1__ )(¢%m¢+) ¢ ¢+>Hi;’2(n+)xﬁ1f2(g+) .

v Emi. 0.

'-1-“’]-, and’ for ¢ = v ‘with

(- u})fqb B, O _'
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we use the fact (cf (2. 35)) thstt H—K (l ~ 1—K ().} ~ 1 (4¢ R} in order to
obtain finally .

<(1+K22)¢’ ¢>H1’2(1“))XH1[2(I“’} <(1+Km)(¢++¢ ) ¢+ "{"(b >L2{ﬂ )2+
' + j (mi coth nl—1)1¢+(ﬁ)+¢ (l}lzdl-!- _.

mi=0

+ f (1+Hi )“% (A} muxza&

: tmd = 0
N >Y|E¢il,,,uzm, +k(¢> <25) o
Let ke M1 The loc.z] form of sefo is gwen ‘in (2 25)

W [V K,
ToTew| oy, 1 |

We choose agam ¢ == (q‘,-w, ¢ ) as dbove and obtam (xk!,!r (,b S U= q5+
(2'45} B <=9{_0:{k 3 Xk U> W(Ml) <.V0.¢* “qu‘,‘l" q",— >H1I2(R+)xﬁ.‘“ 1[2(k+}
‘. +<_ Vm(f)h'}“(}b.}., ¢+>H1I2(n+’xﬂl]2(n+) .o

~ L B G- Ro@ T

Tmd=0.

__"~E~ ] 0(2)( (/1)¢ (1~t)+¢+(ﬂ})ff)\-+’()~}_'d?»

dmiz=0

+< ¢ +¢+’ ¢+>L2€R+)XL2(H+)

The !ast term of (245) is 1]¢+|;L2m'+, (V b b, >L2{R+)XL2(R+)
Now (%,,gb ¢+ Lzm )xsz o _is a compdct bilinear form on

A2 (R, < H2(R,).
In the secnnd mtegrai in (2 45) we: repiace o‘(i) = 1td coth mA—1 by the

" Asinh A
equwa!em functxon cr(l) ——'ﬂun w)_ Then we have K, (A =

“cosh(m—w)d-
—r,r( (A) whence the. two mtegrals iny (2 45) have the real part

us Vo(l)kb (m) aiv ] a(:t)zqhu)lldz AL ,+E¢'+Euz}

mi=0 T mA = 0 :

So for the whole rlght hand sxde m (245) we have the desxred est;mation
from beiow by .

yﬂwa - v, ,+n¢ u,,mm ,}+k<¢>, P
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§3 The -equivalence between the integral equations and
the boundary value problem :

31 In: 1.5 we derived the boundary integral equations under the
_ dseumptmn that the glven data (g;, g») have some smoothness properties,
SRR -
. Qz[ﬁGHan(F‘") (I e '), .gzirje‘H”Z(Fj) (I < T,).

Here we want to show that the weak solution wueH! (€) with
Mgy, g e HVA() < AT ”2(1“2) already satisfies the. integral equat:ons (1.20).
- We will then show that every solution (v, y)e HY2(I') x H~ YUY of the
homogeneous integral equations -defines a solution of (P). and thus of the
variational problem (1.8) and  therefore - vanishes. .So . for -the data
(g1 g2)e HYA(T ) x A~ 12(I,) the three formulations of the mlxed boundary
value problem are entirely’ equivalent. : :

“Levma 3.1 Let ueH! {,Q} with Adu = Q. Then ‘the b()undary values
ulpe H'2(I) and dufon|pe H™MA(T ). satisfy tke integral equation (1.18)
S : dul
Gh (LK) ul, = Vo
Ptaof We use the density of C*(() in H‘{/j 2, £) ({19]) together with
the contmmiy properties of

K: H”z(F)ﬁH”z(I"} and  V: H Y3} - HY2 (),
which- follow from Theorem 2. 17,
We note first that for we Cm(Q) we have the integral equation

(32 UKl = 2w Y
o ' - ot
- with

Whiz) = —— jh(x) loglz—xldx.
This follows from the representation formula (1.3) together with Lemma 1.3.
Note that W (dw) is everywhere continuous, because W is a continuous map
(33) LW IA(Q) - HE(R).

(It is a pseudodnfferentlai operator of order —2; see [9] p. 36) Now let
ue H' () be given with Au = 0. Choose a sequence . {w,! c C*({2) with
w, > uin H'(Q) and dw, - du = 0 in [*(Q). Then w,|, —ul; in HY?(Q) and
ow,/on| —+3u/6n]; in H- “2(1" } by Lemma 1.1. Insertmg this into (3.2), we
obtain (3.1) in the- hmzt 2 :
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Remark 3.2: It follows from the lemma stating that each ue H' (Q) which
satisties (P), ie, du=0in Q, Ulr, =41, é)u/on[‘r2 wgz, is a solution of the
system of mtegrai equations (1.19). ... .

* For the proof-of the injectivity of the integral operator cf"o of system
(1.20) we need the regularity result (Corollary 4.9) for the solution as well as

. the following regularity for the potentxal deﬁned by the solution of the

mtegral equatlons
' LEMMA 33, Let veH”“‘(I‘} ![IEEH 1"1"“‘(1’") for vome 0<e<1/2 and

deﬁne u in Q by

(_3_._.4_)___ _.u(z)'_—ffe - l_og!z au(odsg*yjlogl ~{ ¥ Q) ds;.

r

= Then ie H‘“(Q} and dii =0,

Prooj We eonsnder  as an intersection of haif—pianes with bounddrles

"= which: are straight lines. contammg the segments I We can decompose the
. potentials in (3.4) into. a sum’ of contributions of the individual segments 77,
. “These contribution can be considered as potentials on the half-plane of
' _._"_..densmes on the line which are the extensions by zero of the restrictions vl

_or 'flirj

In order to have ihe extension of o], by 0 in H V2te we first. have to
. J

i subtract Z v(tk) )ck, where {xk } are eut—off funetzons as in (2 8) So we have

k=1 -

"to consxder two cases for v .

(a} veH”z““"(R} ‘and we ha.ve to show that .

f(3_j-_5')_-.- T ’"@(z)ﬂz_ L_ '”‘?“"'""g.f-z"*‘ff.?’(‘f.}'d‘f'. o

2?t- on,

'15 i H,”E(R ) (I\i’2 = (zeC] Im 7= 0‘)

(ﬁ) t ka in: F"’_ cmd we have to Show ihdt

o '(-_3'__._'6_)-. ui{z) — fm logiz C{xk(é)dsg m?% f 1 (0)do, (C)

'._[w'_-._ . c B 2l

Cisin H 1”(QO} where .QO is sore nelghbourhood of 0, For case (u) we have'

o efllx =8y 4+ y?) as the kernel of the integral operator (z = x +iy). The Fourier

o transform of this convolutlon kemel is ¢ le(f; +E3([97; (742)). This is a
_rational symbol of order —1. =

"Therefore it has the transmlssmn property ([9] 10 1) Thus by Lemma

o 101 and Lemma: 8.1 of [9] for.ve H*(R) with compact support andﬁ compaet
._'_"_ln Ri we have ugéH““(ﬂ) for all seR 0 R

:_;4- = _Ban'ach'ccmes mﬂ_ﬁic‘sﬁons is
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- For “case (ﬁ}' we  show that. ul'is' .ictudlly real “analytic in- a neigh-
bourhood of 0. We decompose the integral in (3.6) into two terms: since: xk
.=1ina ncqjhbourho()d of the corner, we can wtite . T

Gy uim—wjde (g)+
e 2n
g JU;;“

wherc g = &[0, O)U(O 3).

&

[ Il L)dg (%)

- The second integral in (3. 7 is an(ﬂytlc near: 0 because ‘the. kcrnel 13_'

cmdiytu, there. For the first integral we use the gcometrlc mterpret‘itlon of
the double layer potcntldi This nges : :

I 0.'.. : ar (}“‘Z | =
2rc "'—2715' _ B\soin 7 )

whlch is 'ina,lync near 0. The functnom W JeH 1’2*"’( f} can lmmedaately be '

extended by 0 on the strcught line passing through I, So we only hdw, to
show that for 1,beH 1"““(R) wnth compac,t support . L

69w jl%l”—@[w(@dé
r
is locally in H'**(R?). Fo'r' this dgdin we use Eskins results:
- The Fourier transform of the kernel of the operator in (3.8) is c/(62+é§),
which is of degree | -2, 50 that (8.18) of [97 gives the desued result, =

We are now able to generalize Satz 1 of [13]-on the contmu;ty of the

single" layer - potential (Lemma '1.3. (i) o
Lemma 34 Let e H- Y2 4(F), 6> 0 and dqﬁnei :
u{z) = W&Jiog[zmﬂtp(g)dsg {ze ).
’ I8 S . )
Then u is continuous in R'z_'and"_u[',: =W

Proof. By Lemma "%3 and its proof we have ucH iJ”(R)z so that

toe

ue CO(RY and Wrsulpr H YY) - CO(1) s continuous.- For the dense

subset H™ Y24 (") LZ(I") we have Gaier’s resuit ul;-= Vi, which then holds-

for all of H E"21”([) "

3.2 For the proof of ihe mjecuvny of the operator cv/o we need the

foilowmg propcrty of F _ P
(V)' S If tI/E%H t"Z(F) and Wf 0 rhen :,b ()

From the regularlty resuits of & 4 (Coroilary 4, 9) dpphcd to- the equdtxon'

Vi// 0 it follows that (V) holds. 1f V¥ is injective in L' (I'):
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By Gaier [13], Satz 10 and Satz' 11, ¥ is injective in L' (1) if and only if
39 o - cap(N# L, h ' '

where c&p([‘ }is ‘the capacxty (or conformai rddlus) of F After these prepara-
tions we can rcduce the questlon of the m]ectmty of fy 1o that of Vi,

THEOREM 35. Let’ U w(v i,b)eH”2 r )xH IIZ(F } he a solution of the
homoqeneam mreqral equarzons (i 20 -

. . . . CY/(;U O
Let (V) be samfzed Then v HMO and n,lt JIAR

U Proof M (o, ) is a solutlon of the homogeneous integral equatlons then,
by Corollary 49 pe BY2*e(r) and ¢e H Y2 (D) IP(I,).
Let ¥ and ¢ be thc extbnszons by G of v and aj; reepectwely, on I'. Define

'_'u inQ by G4

: (31{)) .:_:-_ u(z] s Eajv(g)w - IOgIZ“"C[ ds, WZZE J¢ {%V) lpfg |_;m§[_ d,s_';._ .

'-1.. I R

' Then by Lemmd 33 ueH (ﬁ 2 Q) Thcrefore by Lemmd 12 thc represen—

. '_mtxon formu!a

oull

_ ;__-(3___11_-; e ,MAJ TR I_ogrz gidsgwwj _afz’_togzwcldsg.

2
SR SN

: '_ ho!ds Furthermore i and l,[/ satxsfy the assumpt:ons ‘of Lemma 13 (z) and

_. : Lemmd £3 (11} (or Lemma 34} reapectweiy The;efore we obtam from {3 10)
LU “

o _:'If we msert the mtegral equanon

H

nto (3 12) we obtdm

R =

'W'e msert thls mto (3 I1), subtract (3.10), from (3 I l) g0 to the boundary
g _-w:th Lemma 3 4, dnd obtam V(zﬁ——uu/un[ )= 0 By dssumptzon (V) thl‘?s gwm

O

8:1

' _-Now (3 13) and (3 14) mear in- partzcul&r that u[, = 0 and ru/ani, =0, i.e,
u'is.a solution of the homogeneous mixed bounddry value problem (P) Since

o L we know w::H‘ (€2}, u is also a bOluthﬂ of the vanationai problem (1.8) with
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. vamshmg right- h&nd side. Therefore u = O in £2, and. this implies by {3.13)
S v=0 and by (3.14) = 0. a

 Remark 3.6. Il cap(I'} = 1, then condition (V) is vnoldted [EB] It is
known (see [217]) that then integral eqadtmns (1 18) are not uniquely solvab!e
The argument is as follows:
' By (3] py=1isa %olu!lon of Wy = () Thcrefort,

: .0 V12 ol J { sz Wolr J e [ 0 ]
315 /' = ! " 2 :;,"6) .
( ) O-Gt 'ﬂof:lJ : [ [11 U-”ol:i Nl €T ‘J’o%fz' : 0 ‘l’ﬂlrz
On t]{, oiht,z hand, the mixed bounddry value problem R

‘!’0'?2

Au -y in._g,_ _1'4,.;1 ﬁg ______

has a solution in HI (Q) with v = u|,2 ,:é 0. Then with = ;;‘ ' the-i_'ritegral_

equcltmn

| (3.16) | | _,on ['/1:, | golr, |

is qdusﬁed By substractmg (3.15) from (3 16) we get

0.
s [ tl’ tjlﬂh IJ S
Remmk 3700 (V) is sat:sf ed, then not only

Ay H”Z(I" )xﬁ ”2(r )—>H”2(r )xHUZ(r )
is m;ectlve but a!so
o H*/Z(r)xﬁ ”2(1 )ﬁH‘ﬂ(r)xH”z(r)

as- defined in (2.27); is injective.
We now use Gérdmgs mequdltty to prove sur]ectmty

TueorEm 3 8. The opwarors

[ ) 2 LZ(Fz)XI:I ”2(1“ )—»LZ(I“Z)XH”*"(FJ
(318) ;’/ HUZ(F}XH UZ([ )_.)HJIZ(F)XHVUZ(FJ
A9y QJO;__H_W(FZ)xH _V_Z(I_;_)'—»H”z_(Fz)xH”z(ﬂ); '

are buecnve

Proof. We know that o/ in (3 18) is IHJCCUVC We show that .o/ in (3 17)
is lnjCLtIVG

~Let (v zjt)eL"‘(Fg)xH “2(1“1) be such thdt Qf[le '07 Then'in par-
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ticular (1+K,,)v =V, . Since V,, e HY2 (I';), we can use Corollary 4.5
and get ve H”?‘(Fz) Thus (v 1,11) is in the kemei of c/ in (3 18) and ihuefore
p=0and =0 "~ .

- The Gérding mequahty of Theorem 2.19 (2, 28) means that .« in (3 17)
differs by a compact perturbdtion from a positive definite (strongly coercive)
operator and hence is a Fredholm operator of index 0. It i IB_]CCUVC “whence
surjective. Thus ./ in (3, 17} is* bijective. :

To show the surjectivity of 7 in (3.18) (and equlvaicntiy of o7, in (3.19),
we assume thdt we are given (hy, hy)e HY?(I',)) x HY(F'}). Then we have by

(.17 (v, t[f)eLz(Fl_)xH' Y2(r Y with ;y;/[w]: {;J, and in particular
. _ N i,
4K o =Vigythye HY2 (1),

As above we obtam ve H”Z(F 2) wh1ch proves the surjectmty of c/ in
(3 18): = ' . PR

THFOREM 3 9 Let a%umpnon (V) be sazzsﬁed and let (q;, gz)eH”z(l l) X
xﬁ Y2(Ty) be given. Then_problem (P) for ue H' (82), the. variational formu-
lation (1. 8) undep the samie hypothe'sxs and rhe mteqml equations (1.20}. for
(v, Wye HY2 (') X H* ”z(F )_ each. have exacfly one solution, and they are

eqmvalenr e, v “-u],z, : Ou/(]nlfz, or Lonbemely uin £ is given by (3 1)
L v on F, S (i on. F,
B ARt B and 1}7: l!’ ot

PIOGf We know thf: umqueness of the squtlon of all three problems
and, by Lemma ‘3.1, every solution of: (P) gives a solution. of the integral
equations. This solunon s umque and. this in turn proves that the solution
of the mtegral equaﬂons defines a so!utlon of problem (P} The equivalence
of (P} and (1 8) for ueH 1(52} was’ dxscussed above m

§4 Regulanty of the solutmns of the mtegral equatmns

4.1 In thrs sectton we. proceed alcng the lines of Kondratiev {31] and
usc. the Mellin: trdnsform together with the Cauchy integral theorem for
analytic functions. in- ordcr to. obtain an . -expanston of the solution U of
system (1.20) of integral equatlons in terms of singularity functions similar to
the one (Theorem: 1.4). which is known for the solution of the varutlonal
formulation of the boundary -value problem.

As a by-product we get the regularity results whlch were used in § 3 for
the proof ot the bijectivity of the mtegral operators The regulanty of the
soiutxon U of equatlon (1.20) :
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v is a local propcrty ?herefore we! use a- partition of umty to reduce ihe
_ problem to a local one on the ‘reference. angle I, wherc the three cases (D),

(N),_ and (M) have to be dlstmguashed Thus we first have.to investigate
' operdtors on R, . For this purpose we use  the following - lemma; which
displays the connection between an expansion in terms of singularity func-

tions and meromorphic Mellin. transforms. It goes back to. Kondratiev [31]

‘and has been used in different forms eg by Maz}d and Pldmenevskn {39].

LFMMA 41 Suppose rhat '
.n '!k

mn;ffM(zzmﬂMﬂAm%U(mm)

Tk=11=0

wiaere Toe CF(0, ), ,{ECO [0, co} w:th supp(t—-x) c(O cc) kD <oc2

. Then
_ (1) The Mellm tr amfmm f{ﬁ) exists and is analytzc fo; Irn A < osl, and it
Chas a meromor phzc extensaon on C w:th poles at. S aoc;( (k =1, rz) of orider
lk+1 B :
(11} In the str:p {/ eCi Im )E(Oll, { JH}}, f is Ihe Mellm nansfmm of jj
'defmed by g _ S : _
wy f,(x) f(x)~ > Z ¥ logx.
L. - : k 1!
(m) If we deﬁne s
| R f( | o
4.3 .-'-“,0 ——R Zs"_.
.(’ ._"‘f_} HO(AM ( )--
: then"w‘e' have- _ o _
wn - L (4 Wt} (2). (=1 )““]! |
() ” Ut \di) R 4=

JA) '
zu( f f )a‘"z:f‘f

B Y h, A= =hs

where itg = Ify, !k—f-: 0 Ly < hl <0 <h2 <¢xkﬂ, 5 U) - ,-f 4+ <0
or;ff‘;qrequalm&(,,_ e il
(4 N '}’mﬁ(f) = __‘“IJ_r.l.”Cki (0 ngfkakm i',......,.'n).;
{w) Let b | o T e
ik

@'6} J} (x) f(x) -(%, Zék;x"log x) {x) (jz()n} B

kll
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Then if oy > —1 we have an estimate

@n A< Z Zl il A s ,) K= kis > ook,

Jmif 0

Proof. (1) follows from properties of the Me!hn tmnsform which were

described in Examples 2.1 at the begmnmg of §2. As mentxoned there for

g(t.(‘c}“— x*log' x- ;(!c) we have - - C : Co :

S ' ) (1)
=t

(/L id}fﬁ“l’

This means especmi!y that f(4) is mpld!y dcc;edsmg for Im J ﬁxed and

where  deZ.

fRe Al 00, Therefore the inverse Mellin trdnsform

' (4-8_)-_--- AR fm(XJ =5 j emf(ﬁ)dl (x=ceRy)

. !m)t"*h

_exms for hé fxl, A a,,}, and the pdth of mtegnatson mdy be shaftcd zf we

take into’ account the ‘residues of ¢ f(4).
Thm we get fy, = [/ for. h < a; and.. : S
: ﬁhz)(x) f(hlg(x} - Z Res ff(ﬂ)(—’m} (hy <h2)
o . !mkc{hl fi3) :
Thcrefore “Jw does not depend on h in each mterval he(txk, %y 1), and if

‘we denote @ in this case by ji . then we can use the we]l~known formula
44) for y'“"( “f () to obtain by the Leibniz formula

US) SR 09 = =i Res (] (2) = ?w“"(f"“’f(i))

© A=lay,
.y L (4 I+ .
= ([ )I‘ (d&) [e‘:“f())(j- I‘-'lk}k l]li_mk
N ._:: .._i Z #( I)I )im,&(f)xuk }Og . .
: : 2. . Z C* . Og x

In order to obtam (4 5} and aEso (4 2) and thus (n} dnd (m), we hdve to show
that .

7(410) h=o for "os'ié:‘!k-, 1§~gk<n.

Thxs is done by mducnon on k. We indicate orﬁy the ﬁrst step By the

_ deﬂmtmn of fy wé have

ACE (X) f;(X)*f (X) (* (x)"*—f (x))

' —Z(c“—-c“)x l()gx '
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_:_ Ngw’ we. know from (41) and (4 2) that

ﬁ(x) fo(x>+ z 3 o x)(x(x)-1)+§"; 5 cmx"(wg"x)x(x)
k= Zl-»

—-O(x“) as : x—+0 for every oz<oc2 L

From the decay propertres of f in the strip Im Ae(a,, az) and the deﬁmtmn ,

- of fi* we know ‘that -

CfF(x) = O(x“) as  x — 0 for every oce(ocl, ocz)
. . i'l .
Therefore Z (c, ¢ c1 ,)x Hog! x = O{x“) as X 0 for some o>, Thls gwes

¢l =¢y, for 0 <ig <4 and thus f, = fif 1
y = f¥. It remains to show estimate (4. 7)
‘From (4.5) follows that (47) for ¥ <0 is trmal We use the integral

- Iepresentation (4.4) of f:"( f), the Parseva! formula (24 cmd t —
Schwarz mequahty to obtam ( ) he Cauchy :

(4.11) m"‘ C . . —I/Ze(ock 1:(11;)
(f)l (Jlﬁ 1“m+llfkil,;, 2) for ﬁme(ak’ i)

' Now we- deﬁne

| pj(x)w_ Z zxflogx
and note that_._ _ _ _' .
(4.12) . o ?CPJE WS(R-F)F‘.I;S‘(R-p) r S <oc+1/2'
(IW‘X)P,E WS(R+) St .for s> +I/2
| (By tht we have shown above (1 — 1D is the dndlync contmuatmn of — pr

to Imi>q) Now by deﬁmtions (42) and (4 6) f;; fk'"*(l—*x)}: P,

Therefore i=

o
‘.5,3 o
P~

L

@ nﬁnm ,\._zm"llm, +C

L
i
-
W
o)

T
H .M"'"H

< Clig nﬂs{, \

_ ﬂl} for s> 4172,
Also by (@, 12) and “6) |

.

(4.14) . Iif;f’il,;sm ,\ilﬁ"ll,;sm, Z Zi

wh+lls0

for g‘<°‘k+1+f/2 and &' > k. Insemn 4.13
cstimate (47), u : g ( ) and (4 14} into (411) we get -
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Remark 4.2, We note two special cases of (4.5), namely:.
Vo*(f) = ~ic  (1=0),
?ﬂil(f}"‘:cki ' (I=1).

The first one is important, e.g., if o; = 0 and [ = 0 ie., f is continuous at O,
and then . : : :

@ 8= ——s.c'm'———f ~if (0),
or if &, =0, a = 1 (z1 =0=1,), ie, f is differentiable at 0, and then

(4.15)

(417 o ?o(f)- —iczo = ~if(0).
whereas. the second one occurs if f =¢- x log x+ fo w;th smooth fo, dnd then
7 1(f) =L

Later on we shall need a certain converse to Lemma 4.1, whnch dlso
goes back to Kondrauev [32] and can be proved ina smnlar way to Lemma

4.1.

: LFMMA 43, Let [ be meromorphac ina strrp Im Aelag, o ,,H) and have
poles at Im A =i of order L+1(k=1, ... njay <o, <. s <y i ). Assume
that, for Im 2 = const, f(1) is rapidly decreasmg as [Re A} — . Define f, by

(48) Then for he(cxg, o) and Iy e(a,,, a,,H) we have

_ oty = O(R+} fo’ -5“1/26{9505 051) _
o j;.h':)GWg’.(R+). fOl‘ 5 _1/26(5{,,, (Z,,'+1) and .

.oH. I

= X3 o x4 (9

L k=11=0

Formufa (4 5) ho!ds in this case also.

42. Now we apply this .to the operdtors K., ¥, and ¥, oot Ry the
Mellin transforms of which ‘were gzven in Lemma 2.13. We assume that f
has an expans:on 4.1). Then K, (1)-f(2), Fo(A) f(A~), and ¥, () f{4 —1i) are
meromorphxc in-the whole pla.ne ‘We compute. the residue- (only for K, and

becausc VO o= ]w 0) o .

1) AO 2= :czk, a,(e;éZ Then K and 77(1, are reguiar at ,10, and we get

. .. Mk ~ 1k+r. 1 . d fk’*f.m i S
(4.18} f E dﬁ, o K ()l). mk’ym Ik(f)

s o(lk+-‘""*m)’

’ n : lk-{-r 1 L d [k+r .m - ) . . )
:ak-l'- . : - A - L HEE
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A Special case’ of (4.18) is (K,, is regular at 01)
(4.20) .
PO e . W
BR) = Ro 00 =

2) yo ta, weZ, f regular at ig.:

""":.-;,-g(f) ~if f has a pole of order 1 inﬁ 0.

roL gAYy,
(4.21) v’“(K f) — ( ) LK (.,,(i)_(ifia)]f_;.x,-a ,m(;‘

N {,(r—j)‘ di
= 0(?‘ J)i

o 3y ’JLO“"l‘xks akGZ

“ 23) ‘“‘*{Kﬁ,f)

i I E d rj = 4_ . - N s A s
(822) 5 “(Vf_)m —— ( di) (Vo) =limes o ().

Ik+r+i

d

L i Ik+r+1 n N . ; oL
. =.' : mZO ({k?'*' { __n;)—f (;u) : _: £K¢ (}L)(}*—Iak}:”i:mkyinilk(f)ﬂ .

@21 @7 Vul)

et B L\ e e AT S -
x_mzo (?;E'}I»—rﬁ)!(d/) e [Ko(‘a)__(}“_'fak—f)}fl=iak+1'Vﬁiik{f)' :
Specna! cases of (4. 23) (4 24) are | | IR o

(4.25) “/o(wa) {Km(i}(i !Bi,x £ }’o(f H-{K (/u)(/ﬂa)]h — i)

w—7 |
= Nrti cos. @ yg(f}+~— Sfﬂ (D}’; (f}

b f has a pole of first order at i;

(4 26} - yﬁl(wa) F— sin.w y5(f) "1ff has a _poic of . first- order at."i;

(4.27) yL'[(.Vm f-) = w_;__co_s-w_-yg(f ). if f has;.-a pole of _ﬁrst o'rder at 0.

_ 43. Now we can. investigate the regularlty of the solullon U of the
: mtegrdl equations (1:20) o/, U = /j'gG By the reduction to one of the three
local forms (D) (N) (M) we get equdtlons B :

42 CAPU=APGHH (xe (D, N, M)

B :on_l" ;. which correspond to (2% 2)—sy_st_ems_on“R;; The f__ui}'ct_ion H in (4.28)
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comes from’ the localization and is thus C*. We will proceed as follows:
We assume that Ge(C™, and thus G = {g_ , where g, has an expan-

sion 4.1) w:th ap =k =01, - an and [, = O Then E‘J’G+H will be mero-
morphic. Therefore  also j‘ 'O = A‘"G+H is meromorphic and

Aconsequenﬂy also U. Thus U has an expansion (4.1), where the regularity of

the smooth remainder term can be deduced from Lemma 4.3, Also from the
Parscvai formula (2.4) and the equation

0= - l{ﬁw]

it w:ll be clear that the axpcms:on coefhcu.nts of U as wei] as the smooth
remdmder depend continuously on G in'some appropriate Wg norm. By the
local equwdlence of norms, this leads finally to an a.priori estimate for U on
I' of the same type which was given in (1.11) for the solution of the
variational problem. By continuity, this, hoids not only for GeC* but for G
in the cmrespondmg Sobolev spaces. . i

©Tn the use of Lemma 4.3, we always start: w:th the mguldnty of the weak
solution, i, in some strip Im 2 {0, £), and-then shift the path of integration
for the inverse Mellin. transform up to -Tm A < 2, which corxesponds to
Sobolev indices se( 1/2,°5/2). We will thus mvestlgate the poles of the Mellin -

E transforms in the: 5ir1p Im Ae(0, 2}

The Mellin transforms of the operAtofs were caiculated in Letma 2. 13,

‘but from. t_h;s, for peC™ [0, a0} wecan _only deduce

K= m(/) /)(/} for zm;e(—z 0).

For the smp Im 4 5:(0 1), where we want to stari, we have to use Lemmd 4.3
together wnth (4 20) and (4 16, whach glves

(4-..29) K"qb(x) B '_“ P ﬁb(g)“*“&&(x) 3 with

wqb}) R, W) q’)(!) 'fo'r Im'ﬁe(O 1) ($eC(0, o).

Now we- compute the poles of U in the strip m 4e(0, 2) for the three
focal cases.. The dependence on the given data G will be investigated, and
several special cases will have to be distinguished: From the computations it
will become clear. how this procedure can be generahzed to reglons of higher

'reguldnty, ie, to Imd>2

(I2) Here the local _forms of t_he operators are

o . ' V() Vm !i /. ~ 1 KG’ |
@30) . B %-—[V VJ+[{J,_ :. fﬁo&[gw.z }
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S Werassumie Ge CE (M), ie

@3n 6= [jw], with g,eCF[0, ), g+ (0) g-(0),
and ¢, (0) = mgﬁ({}) il w ==

' For .'U_'= ["b"] we can as'sumé_'an..expahs_idn_(4._1)
- {4 32)

(x) (% Z “u T Iog x} (x)+ l/fo (x) (0 <oy <oy <. < o:n}
E . k=11= R
Where vl EH‘(:'Cr) for’ dll 5 < 3/2 Fxrsi we look clt the poies of JOG By
(4 29} we have

g;(O)'.#“%’Eg;{'O) . e
(433} BoG =17 +_.-%0_G;[11Jﬁ-g+('0)'+3§'¢6 with

e ———smh(w n)ﬂ

S e iy i o5miht
- R ~ sinh 72 S
BoG() = Ao G =| LI

- S e sinh{w—m) 2
. sinh.d-
g (J)]
* Im A 0 I
[g.+ o] mico.n. _
In Im 4e(0, 2) there is only one' po!e-at' AO m'i of"'ordér'? with residues
434 (0 6) = Seld O] o
. T | g.{0) o

This folIows from (4 26) and (4.17}. In equ-ation'(.4.'28) theré abpears a
functton _ - R RS .

@9 =-_[,; ]?‘:?8“(1."”?% hECEIO e b O =0

if -_Q_fc A (0) = K. (0).

‘H thus has a ﬁrst order pole dt io_s 50 thdt yo(%’oG—{»H) is not

determmcd by G alone..

(4.36) I o= then Bo _[I 9

OJ s %G“FHE_C.m‘
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For w # n, (4.34) means that
(4.37) R
,. 4+ (0)
B G{x) = ,
0 G(x) [ (0
Now we calculate the coefﬁucnt‘; in {4.32) from the requirement- that
/o U also has only a pole at A= wzth the residues glven by (4.34) or (4.36).
We have -

(438) Ao U(R) = F (DU (A—i) |
| 1 {coshng' : césh(k'—w)l][tﬁ_(ﬁw—i)}

= Asinh .ﬁi cosh(r—~w) L cosh nd o (A=

]ﬁ@ﬂ x log x- ,g(x)—i-Ho(x) with  Hye C=().
R0

We use the operator D= [ 1 IJ to diagonalize o7, and define

(4.39) '_ b{ v J [;’:J and hdﬁ:

({/ (A}D— ' I " [cosh nﬁp+cosh(n¥(u),l 0] .
o 0 . T sinh - 0 cosh nd—cosh(m—w)A |
of (2 22) From = |
' ) s_mh(er w)ﬂ smh Wl
(4.40} dct ng( )~ )%mhz R .dnd o
o C Jsinhad cash mh - —cosh(n—m)i
bmh(zn m)l smh a)k cosh(n m),2 cosh T

we see that U c:dn havc polcs oniy at (/Ld—-:) with det gig (Ao) = 0 of order at
most 2 and at" i, = O-of order at’ most one. Thts gives (g = fx; Tm A, e(0, 2)

oy

(4.41.) . Smh ((23_._.@. m) f-q'_@ « .ﬁ,_znz&), I=1,23;
(@42 (. -_.sinh(a)'-iot)._-' 20 e “ k=1,2,3.

Of course 1t is. not for &H w thdt all the SiX cases can appedr (a) dnd {

together can appear only in the foiiowmg cascs

. B (ot and
(4.43) | -
o e et ki3

30 T Ty T T
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o In these cases cos i = 0 = cos{n—w)a, so that o, {ia) = lO OJ, and

d o [T
oo (A< =E[ / J

(4.44) o -1

Thereforc from the Londxtlons E - _
) e (79 U) = 724 '(o/o 0)=0
it fo!lowq b}/ (4 22) and the regularity of c/(,U at A= i that :

ooyt 0 h
@4s) - (U) ); whereas

Aj)gﬁf”(U)_: J is an.arbitrary- 2-dimensional vector.

This means that the contribution of this pole is of the form .

A

"X .

Cy Lo

When only (a) is fulfilled, we have cos nz # 0 and
(446 cos(n—ayx=(—1)cos ma.
There'fo.r.c . . : S R _
' R c_os"'rt_a_ [l%—(——l)’ 0 J

Do li -—1”= |
c/g(:o_t_)_l) Cooeasinma| 00 T=(=1)

and th;s unplles y‘(“ _ “(:,[r ) —-{) for I even dt}d y““ Do) = 0-for I odd, or

- 1(1 1y Ry 'f‘__ RS ST,
(4.4’7) | (U} [( )IHJ G it FrEv
.Slmildr!y m casc (ﬁ) onc obtams cos(n*m)rx e (—1}"00‘; T, whence '
. TR ' ' lm
: ia — 1) ] ip :
y _(.4:48} e '(U) [(“‘_1)“_IJ c.a » lf _a T W :_;_.' .

In both cases this gives a contribution c,,{+--1]'x°‘*‘-,. which runs. through

a -l-dimenéioné! space if G and H vary. ___

‘At the point o =1 by {4 M) (o # 1) AU m‘_uét have a pole of second

order. From the form of 75" in (4.40) and sin(2n— ) # 0 # sin w it foltows
that U has a first order pole at 4 =0 with residues (4.27).

(4.49)

o {1 sl i [1 —cosol[ai O]
. ;"0 s f . i -ul F = X N .
volU) =in LOS w1 J : '( j" U) sin @ [cos w T ][gl ()

“sy U(; e i
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This shows that the smoth parts of W, will in general have differént
limits at 0, i.e, will not be contained in H*" *(I'®) but rather in H* ' (R, ) x
x H YR,

For w='n one has

: t . [cosh xi .. I
(‘_;'5(_')}1 (’/0(}) )Lsmh n/{ 1 _' cosh nﬂ.J’_; RE s _
| | A () A [eeshmi =1 )
¢ Y sinh A | -1 cosh i |’

By (4 36) ong hafs to reqmrc that q/o 7o U should have a first order poie at 4,
e Wlth residue. .. o . S _
St
N

Thus ,(‘:f{') U:_(}.)_—ﬁ-—;;_‘.-wew—;{ : J»é— UO ()) where U s I8 regu!ar at A =1 This gives

' .;:...C;&:.:__ '  '—cosh i+ 1
=c¢osh i1

J+T A AT, (;1).

smh nﬁ (/L—l)

Since. cosh n) ¥ 1 hdS a double zero at A=, the first term m (4.52) is reguldr

: dt f mr The second one can be wntten as

smhrr)[ i =1

Therefore we obtam

1 wl]yﬁ(a)ﬂf (,1) with U, regular at A =i,

;1'J+-U2_(»‘1}j with U, regular at 4 =ior

Thib meam ‘that; m contrast to the case w ;é Ry the smooth pdrt of U is

contmuous at the* ‘corner point”. There are no-poles of case (@) or (P) for

B T, and $0U will: be: contained. in H‘(F‘”) for all s < 3/2
(N} Here the loc‘ﬂ forms - of the operdtors are

| " 1K Vo v ] 1]

For. G we how  assume

(455 G= [g J with g, CP[0, ), and g. (@) =g (0) if  =x.




R S M. COSTABEL AND E. STEPHAN

For H we again have He Cg(I™), ie, (4.33). The pole of 7,0 at A =i has
~residues (by (4.27)) . : : : : :

(4.56) _ _
: 7 } -CO. o : . -
1(;§0G) i c0s @ (G) E 1 coswllg (0
nicosw 1 o T nlcosw 1 g+ O
For o 3 7, this means that #o G contains terms x log X. For W =, thcre is
only a first order poie {note g . (0) =g+ (0)) w;th residue

whlch means that 39 G (which i is contmuom at 0 by thcorem 2. 27) dfso has-a

[L
continuous derwat;vc at (}. For U = [ ]we can assume an expans;on 4.1

(@458) b, () =() Z e XFloghx) x()+0%(x) (0 <ay <. ca)
k=11= : R
where vigH_s(RJ,_) for all 5 < _5/2.- From (4.29) foiiowg
(4.59) " U = [ - (O)J Q/OU _wiih |
o vy (0) oo

./‘\
| szfg U(A) 9.4’9()} U(/?.) for Im AE(O a{)) (ag o= mm {al, 1}
- As ;foU has to be contmuous and oﬁ’o U (0) G, it foﬂows that R
(4.60} _ v, (O)-«-v 0, ie, Uis contmuous

InEm 40, Hu(l, 2) poles of U can only appear where det /o () = 0. We
have

det. o) = : smh(Zn w) 4 Smh A

_ sinh® d [ _ .
g/ (i) sxnh md - Isinhxd . sinh(r—a)d]
e smh(zn ‘w} 4 sinh /| sinh (- co)A sinh nd S

Therefore poles oceur in the same cases {0} and (P} as for (D) ((4 41} (4 42y
In case (443), ie, if () and (B) are simultaneously satisfied we now obtain for
U ‘a second order pole, where the residues have to statisfy

(=1 ﬁ,.a N (=]
46y .[(__‘1)& ; ]yul.l(w.z__gm[(_.-l)k (I)J'yo(b’) >

| _"_(4-_.57)--' £
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in- order that. ﬁ should be regular at g = ix. This implics that in this
~case U Lontdms a term’ '

-(4_,63)- S [(Ml)k“](c1+czlogx}xm x(x)

i if ._:f,?;G'(3i/:2)+P? (3i/2) 1s arbitrary, As follows later on from the equivalence

theorem, for the actual problem it is not the case that even all poles from
casc (Ci) dre dbsent This' means especially that tcrms of the form 4. 63) will
not appeat in the actual solution of system (1.20). -

‘When only {m} is. fulfilled, : we have

-.(4 64) :" sm(n a)}a ~—(w1)’H sm ot
._:a.n(j_-thl}_sz-_..o_zfq(za)-; (-_.m_-nz“ S w_Inch_ gives
‘“:f@é,sziw:;«Lme[;]f“
- | . . | | .:. o }}O { 1) | ...o,’
-'whereds m case (ﬁ) sm(n-w)a w(—- 1)“s:n o and’ thus
B R RS e
""””* {eap ~1 J

)= f-1>“J

For /0 =0 # rr, C‘/g U must have a sewnd order poie wnth ‘residues

- (456} From: (4 61} it follows thdt U has a. ﬁrst order pofe thf:rc ‘and the
- re‘;lducs sat;sfy (4 26} L

7-.-'—1[ 1o ‘”][" :‘ =f %') P *(K“’”*’J L gin w3 (0).

Hd cosa) 1 gy Yo (K, 0y n

A__ r L o cos @ .fiu.(O)
gan sm wleosw 1 Q+(0) '

Thls equaltty shows thdt it mdkes no sense to assume that G is
contmuous ie, gi(0y= g- (0), because in this case the smooth part of U
wouid thG t{) ‘idilhfy a Companblhty condlt;on of the form

Thls means thdt

C@e). 0=,

“ " 15— Binack Contef Publications 15
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' 10 .
whxch makes no sense. For w =1 we have ;a!o(ﬁ)-— 0 1], whence U
= oo U has to have a first order pole at_x?,a = | wnh residue (4.57)

@) =]

which m.eans.'that' the bmooth'paft of U- 1:, éo.htihuously dlﬂere'm'ndﬁi'e 'at 0
- Of course, for w'=m, there appear no. poles. of the form (). or (B ), and
thus U itself is contamed in. H‘(F ) for aH 5.< S/2

Remark 44. In both case (os} and case (ﬁ) we have Ial = 1/2 for the poles
of U{4) at A = io. Therefore in the strip-JTm A l <172 there is only the pole at
4= 0, which is completely described by {4.59), This means that’ we can start
~at Im A= —1/2, which corresponds to 1%, and then: shift the path of
integration up to Im 4 < oy > 0; and we oniy obtain an extra “smguldr” term

from 1 = 0, which, however, is constant near 0 by {4.56), (4.57). By using the _

g dcnsxiy of CE(I “’)' in H (') and. Parseval’s equation (2.4), we obtain.

CoroLLARY 4.5. Let veLz{F) and s‘e[{) 17. If (1+K)v—~h wzth
heH*(F}, then veH"(F) o

Proof. For s 3 °1/2 the result foliows from the prevnous dlscusswn Then
the result for s = 1/2 follows by mterpoiatmn |

{M) We descnbe only the casc (Mt) which means that I'. corresponds

~to I'; -and I’+ corresponds to I’ 2 Thus. we . assume Gw[zl] with
A(}J.-_ _ St
U1,26Cg [0 oo) We wrxte G()) w
2(1“1)
~For H we assume again (4. 35) NN

The Jocal’ forms of the opérators are Trow

. t(); Vo—Km_”
0" ~10 -V, 1
g w0 . ) '—-'Vm S
g _o_ ! -—.K-“, Vol

'For U= {lf:] we can assume expanslons (4 32) for ¢ and (4 58} for v. Then

} i_'U(z) - [’5(1~—1)] Fom

4.70)

~D{A)

”30( ) A sinh nAl A smh(rt w}A cosh ni

"1 ) [}"'Sinh )

| --cosh(n - w} l]

R e R e R T L e

o (4 75)
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we see that JOG has a second order pole at L =i wzth res;dues (compare
(4.26), (4.27)) -

(4.71) )’ ;(ﬁ)“ [ O o8 w][yi’)(g:‘)]

—sinw - ~1: |{ y5(d3)

1[0 - cos |4 (0)
T ~sinw  —1 'gz(O)]'

e . This-implies that we have to distiﬁgt_lis__h S__e_ver_al cases: S
e nf2, n, 3nf2): 4G contains a term [Cl}xlog xy{x), ¢1, being

- 3r_bitrary,

. RS L
—-n JEOG contams d tcrm _—,;[ng(O)-x__.log xx{x), which is

. '.'_Smooth only 1f
S __(4 )

i ; (0) :(} o

R Ly T
56 :comaiﬂs.;aﬁt.ﬂ;r.m-"f;.[i](g’r(0)+_92.'<0))a which is smooth

Somm ggoG_.pontal_ns a term--rc[ :,(g1 (0) - gz((})) ‘which is smooth

e GO=aO.
L "We have
" sinh{2n— @) cosh wi
dﬁt Ef{)(ll) lsinh?‘nﬁ . s | :
d () sinh md Asznhn}{ _mlsinh(fc wyii
Ry _ smh(Zn —w) A cosh @A | cosh(r = @)k cosh A .

For A=i me,é {(%/2, n, 3r/2}, .+/5 ' (3) vanishes at A == i; therefore U has

there a first order pole whose residues. satisfy

'1: 0 ._-._COS(B 4,.(0) . i@ WO
; f[»m- i P TR I 144

‘where l[r“‘ and v* denote the smooth parts of and v, tespectively: that is, ¥°
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for % < 1. Therefore

A O] 1 [=sinw —1 g, (0)
(.76} { 5 (O)J " cos m[ Cb sin (HJ [qz 0 |
Thas is diso valid for o == - 7, where it gwes ' '

which is a natural commulty property There is no. such (,ondmon on ¢’
Note that if G is dl‘bltrdi"}’, 477 1s no re%tr;ct:on on U.

For @ = 7;[2 /5l is regular at A =i, but it does not vamsh Thereforc_'_

U hdS a second order p{)!e w:th u,suiucs T :
_ B _ T '0'%2 0 0 g0

P g . o 5 A E . A
(4]8)_ :~_1_({{')  _ -ﬁ/o_ _\1)/7.1(-10 L) : [0 2J {_——I wij[gz(O}J_

absent if (4.73) i is satt_siaed in this case, U hds a first order pole at 1 = j, (md.

the residues satlsfy

_1f o 0][ao - ',1 [ e
.0_—[—E —-I]L‘z(oj f 1(,6’0(})w,? l(ra;OU)M"f[ 0 AHEF(O)J

This gives the neccssary cond{tlon s
@79 D Mm;meg

Similarly, for mw?n/Z we " obtain ‘a term 1 (fii(O)w

-~ g, (M}log x- ;r{x }, which disappcars ;f (4. 74) is sausﬂed In this case we gc,t
(4.80). 0}(0) =y (0). |

Exnept at Ay = z, there are pok:s at }0 with det L“/(}(/LO) 0 This gives first
the case {z) of (440, and secondly o

b : 1 R R
wMHﬂ.*CMMDm_G@ame*Q'kzhll

Cases («). and. (y) can simultancously occur in several instance, namely for

I A T
B B

""and v do not contain, respectively, the x™ ' log/x and the x*log'x -terms

"If 41 (0) 1, i
-1 - I[GZ(C”MI f{{ ;J (91(0l4~qz((») .

T A N
Therefore, U Wi!l co’ntain a’ term [ (qi(())—qu((})) iog X" x(x) whnch s
i .
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w£%3 a#§ Uéikzg
w:%, amz.ﬂszxA
w%?, 1;2 05;F=u
w:?, :; (=2k=2),
@;g¥f a%£ U§Lkm3L

o Inall tHeSe'cases, U contains terms of the form-

S R \ o
11_5 _gQ¢82}_ o : xé”lf[; ¢rhezlog x| J 7(x),

3x+¢4 x Iog X

_fi_i_:whnch run through a Z—dzmcnswndi space deicrmmed by the remdue
"".cc)nditmnx - -

RN .3'”’ [(OJGU}”*'C’/U(IQ) . 1(U)
: “(483) d .
o G“‘"'i’o '!oU) 5‘/0(1053 (U)“w/o(m}? Uy
' We wr!I not caiculdte the detdzls bec.&use in the actudl :,ofutlon of. the
ounddry value problem the poies of case (os} and ‘thus the double poies
; ) If “only. (@) is - satisfied; we_ thG COS(n——(u)tx—(ml)’cm oL
' ('—- D Lsin’ fte)! thereforc I

c;g(,;, __*.w_h'erét Qg{i)ls :'régilluar at )m o

ist '*.'_'wa sin ‘ot (wl}””sm ot
“cos ! (—«1)‘&.05 T COS T :

S w-o.c.sinnocf'
ia U L e ' o
3’9( ) ._(- [COS(R‘-I-._&))"IJ, R

c" — Sin mo X2
cos{m—~w)a - x*

. 'j.-T hi_s'g'ives-._

whlch produces the term

_'(4.85) ] 2(x). (¢ is some constant)
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. in the ex;ﬁa_usion_ of U. If only case (y) is satisfied, we have

>

cos (1~ w}a ={~—1}"1sin ne;  sin(r—w)a = (1) cos na

whence

. 1 - '
ey o ) e | 5
o (4) " cosh w/ ;'?% (ﬁv).w%th o
(4.86) A B
' A i) = o sinma p o ~osinme. (- 1) cos na
. Aol sin(2n —a}| (- 1t sin g cos o :

. 7o (U) = C (__ 1}k+ ;_.J - C[sin.ma:,y.. - -
which produces the term _ - s _

e L'_Sk-uxa 169 -:-c[ m ]-x_(_x)

Sift o X

This gives

(¢ _so_m_e'cons;a_ht}_. in the expansion of u.o.oo _ _

Remark 4.6:°1f we compare the local expansions of U at the various
corners which we have just studied with the expansion which is known for
the solution of the boundary vahie ‘problem (as described in (1.12), (1.13),

then, taking into account that ¢ =ulp, and ¢ = (6u/8n)],~.1, we see that the

poles. of cases (B) and (y) yield just” the singular functions of the -latter
problem. The singular functions from poles of case (c) would correspond to
solutions “of an- extetior Dirichlet” problem. This is natural, because ‘the
operator «/, alone does not “know” that we want o solve a mixed interior

problém. The disappearance ‘of these singular functions for the “actual sol-

- ution results from the fact that the right-hand side of the integral equations
is of the form #,G and there is no global smooth perturbation H of this
term such as occurred in the case of the localized problems (4.28).

- Thus if we want to.describe the mapping properties of the operator Lo,
we have to use the singular functions of case (o) in order to obtain the
bijectivity of ., but if we only want to° describe - the’ regularity ‘ot the
solution U of oo U .= %, G, we do not nieed them. =~ . 3

44. Let us now sum up our calculations: Define

= for jeDUN and o, # m;

.

R for: jEM andwjég‘g‘,;}

oyt = s fOr 'a]l_j = 1,_'..,., J :

| fbf jeb aﬁd op ;é n
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Then we define, in terms of local coordinates which are given by the natural
identification

iy {Ij}uf'j.r E..c ij_: |_05 OO)U[O, OO)’_ .

SRS T s R a?_ .
(4.88) uf*x[(_ﬁl)H'l]'x & 1’ 'uj(:z;{(_,'i')ﬂ’i]x"}k 1;..

for je N and w;#n

| o .F..k S
D Yo - R
(489) uj = (. II)HIJ-x"_‘.J'k if there is no Ie N such that af = ay;
0 . :.. o1 a(.i . r G . . !
Uy, = (4;’)“1 xHlog x if gy = aj for. some [;

for je M and ;¢ {n/2, 3r/2}:

@90 () jeMy, ie, P Ty and [P < Ty

o L@ 1
- " 'ajkxa"j“-. .
S TR

: | . )
L0 g a1 -. o
oy TSI T X T

o= | * ] il o oy for all I
. Lcos(n—w)adx* 1 - N L
oy = T BX et f ol = oy for some 1,
7 Lepxtdyxlogx f oo '

.. where Qg . o djk.:é"r'e. deternﬁrieé frofn (4.82), (4.83).

'(4.91.)' (u) ;eMz, 19,F’c1"2 and T+ & as for je M, but "the_, two

components i_)f"éﬁ@h"?eétbr_are interchanged.
For the angles which are excluded "at each corner we define no
0 0
Do Gy ajk’_ ujk_! OF Hpg.

Finally, for every j=1,...,J we define

. O [xlog x 2o 0.1
(4.92) ' b .=[ 0 ]’ 'h;r:[xiogx]'.

By A we denote the set of all exceptional exponents, ie.,

@9 4= fd Je {1,250}, ke NP (0,2),
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and similarly
{4.94) _ AY == 59{% je{ J‘ keN* m(O 2.
-Now we can deﬁne the S .
paces }"* fé’“ dnd Z*, In wh:ch Ct
functions G, #4,G, and U will be contained. , FGSPECUV?»EY’ the

Let {yl j=1,..., J} be a collection of .
cuf-off {un t
. (2 8). The space 7* is dehned for all se {1/2 3/2): ctions with Promff‘es

(4.95) ge 2% < (i) theH (1"1)
iy gl e BN for sel1/2, 3}’5);
(iii) g, ¢ HTHE) o for - TPer,, sel3)2, 5/2}
(iv) xjgeH"“‘(me) fo_;‘ ]eN 56{3/2 5/2] 0] =

e . » ) ‘ | | .
J i | ith ‘l~+‘}+ - - .f.G_M_ls w; = 3nf2,
e B/ O T J‘Eflwz'»wj.:n/za

g-=gs) . UeM,, 0 =2n/2,

dnd 95[3/2. 5/2]

. Fhe space A g defmed for 1 56“/2 o
| f 5/2) (32} (and for s =
aﬂg‘es are of the type excluded in (488) @ 89)\ (4/ 90)§dn o “_ -3 ital

_(496) he W e h' sz+ E Z ¢} h i1 wnth cf constams

e b j=
h+ defined ‘in (4 92)
(1) hof:.‘iEH?(F':) : 3_3 hothH ([2)
(11} all ¢f =0 for s.< 3/2
(11;) ci (}._. _fo'r _}GDUN dﬂd

’ S wmnandfof;eMandwe{friZBnZ
(w) ¢f '"-wz’ . for jEM and wy =g, / .

- The space #* is defined for dﬂ 9 w:th 9_1/2@{0 2)\(AuA“)

(4.97) He !‘ < uhug—kz Z "6 u;k'+-' Z Cﬁc-u}l}?‘
. J

RN b B fs 1/2
: Jk : ﬂﬁq t72

{1) where Uy qatnsﬁes exacti
y the same condxt:ons as the elem
e c
if I'y and FZ are mtezchdnged b Off
(i) &z = {} _L..k Al u, ujy are. not defined. -

o (4192)
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The space “%* is defined fcn all s with s-~1/2e¢(0 20\A

j= laﬂ‘/s 1/2

(4;98) L weZh e w=ugk (Z Y. _rk“jk)/p where

(i) ug'is. as in X‘

(u) Cii = 0 if qu is no[ deﬁned

“The.norms in the spaces 7, 9, dnd. 2* are dt,ﬁned in the n&turdl way,

C name]y they arc rs,qutrcd to be equivalent to the smallest norms for which all
“the cond!tlons that are to be satisfied in the individual case of 5 and [ are

defined by continuous mappings. -
We gwe two cxampies

(499) Qe iuz“um _Z ||q|“u},s o P

IO S = -
1f 56{3/2 5/2) (even sc(i/Z 5/2)) and no ;=1 for ]EN
RESE dnd no a; € }'E/Z 3nf2) for JCM‘

1ak(s bz

lf se {1/2 3/2} WAL

@i nu_ii'_ﬁ':,,;;f‘--{|E,néoi_;,~'lit,,;-}u ,+nuaf2n,,s(,2,+2 > G j_

= emark 47 For PR the spaces ’f}’ 2 a2, .EZ - are Lontmuousiy

embedded in R A respectively. . . -
48, Wlﬂ'! these definitions we deduce fromour calculations in t;43
CTueorem 4.8. (i) For sel1/2, 5/2)\53/ 2% the operamr Bor. X5 Y s

' _commuous
(i For. se{1/2, 5/2}\(‘3/2‘ w AUAO} the operamr os B W s
. CORtIRUOUS.

(ni} If UexV? =
He @ then Ue F% i s is such that % and 7
(1) There is an a- puon-es*nmate jor rhe sofut:on oj o/()U Ho G

- 4100 S L < (i, +1|Uu_@,m>

H”z(l JxH” ”2([’ ) is a soiunon of cloU =H and
are defined.

COROLIARY 49 If U [%JEHUZ(F )xff ’2(1“1) zs 7 soiut:on of the

' homogeneous cquanfm
AOU 0

' then ueﬁ”Z“(F ) and !PEH* ’2+5(F )mLp(F) for some‘.a'-_;'o and p>1.
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5 Proof If (4.102) is satisfied then Ue #* for all s < 5/2. This means by the
de{mmon of %* that

u= “0+ Z tchkl‘}k+zﬂjkujkfxf

. F=1 % ik ajk.
whcle the smooth p:trt it - satisfics at least

Yo ”“0!;'2€H([2) "an 'J’o "-uoltIEH ’(F) for s <3/2.

Thc smgular parts g u jk have the local form x* or x* Iog X fo1 v dnd X' !
or X*- 1log x for i with o > 0 Therefore o - :

Dy Uy and Wl e A ”“*(F)mu’(rl)

with some 0 <& <o)’ and 1 < p < 1/(1 w:sxf.) (for a < 1} It 1emams to show
that v(t;) = 0 for je M. : o

For- this purpose we define -

' oL e oon T

=4 o el? F
.v _%0_0“ Iy "

Similarly
i,b “on. I

| :'_-'.;71:{ |

0" on-

161?71/21-6(['); .

The homogencous mlegral equdtlons (4 102) can then be written as (14+-K)v
= Vi By Theorem 2.17, Vi e H'***(I"), and so we can apply Corolldry 45
to” obtain ve H'/2**(I'}, which means’ ve HYE(I,). w

‘Remark 4.10. For the mhomogeneous equdtion {1 2(}) we obtam as in the :

precedmg proof.

(@103 . - _.__512{ v.. -...()n I, G.PIS(F)_
o g1 Fi

if we assumé that Gw[ ]e%s Espec:aliy for 5> 1/2 we. ﬁnd that the
. g1
solutlon visa contmuous extension of the given data’ g, from Iy to I

4.6. Having proved Corollary 4.9, which  was used -in § 3, we may now
use the result of that section, in particular the bijectivity of oy ZY2 — l/?
{Theorem 3.8) and the equivalence of the integral equations {(1.20) with the
weak  (variational) formulation (1.8) of the mixed boundary value problem
{(Theorem 3.9). With the help of this equivalénce we are going to show that i m
the expansion (4.97) of the solution U. of (1.20) the singular functions u%
whnch ‘belong to solutions of the exterior Dirichlet problem do not appear:

- Fix sye[1/2, 5/2] such: that SO~I/2¢A Choose . the right-hand- side

(4104) L WIS Clla UL
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G = r] :I ™5 thls mecms thdt thet‘e s a funcuon qu“’{Rz) such that g
g2
=gy and g, -—(;g/ﬂn)i; It turns out thdt then all’ the ‘compatibility

conditions of the deﬁnltzon of " are satisfied (for any f). It is clear that 2™
is dense in " for all t&[1/2, 5/2]. Therefore, if ‘'we show that m ‘the
expansion (4.97) of ‘the solution U -of o/ U = 3, G the coefﬁcnents ¢ are
zero, then this will also be true for any right-hand side in #°°, beécause by the
a=prioti estimate (4.101) we know ‘that these coefﬁments depend contmuousiy
on G in the %% norm.

- Now from thc,, ‘equivalence theorem (Theomm 39) we know that

U s [;J with o = uf,. and {If _h-i” “where u :s thc wmk soiutlon of the
R : [ [I

boundaz:y value problem with: data' G. F or tim u we have GI’ISVdI‘dS
expansion (1.10) for any s> 1/2. Since' a real" proof of this expansion seems
to exist only: for e H* (), k integer, we use it for k = =3, which corresponds
to s=5/2"If “we compare: (1. 10y with : (4.97), we. conclude - that
(" Z 'cjk'uﬁ‘)'xj: h'as to result from' the trace's of thé'SinguIar functions
a;) <sg= 112 :

(1.13) (whlch do not dppﬁdl’ in (4 97} due to (4. 73) {4. 74)) and of a functlon in
H3 (). Obvmusiy this is only posszble if all ¢, w:th aJk < s0~ 1/2 are zero.
Summmg up, we thB shown .. L : :

fHEOREM 4]1 Lei sell/2, 5/2)\(‘3/7‘ UA) T_iie_ri'

(1} Ay PSP s byecnve '

(n} ;JU F Sy B X< W s bz;ectwe

For the 50!14110:1 aj hiOU ,»:?OG we have Ihe a-p: EO?‘I estzmate o

C’ IGH s

st

Remark 4.12. The above regulcxrlty rf:sults are of course true not only
for the solution of (1 20, sty U= @OG but. a]so for the solution of (2.26),

' _«//U '%G because these two systems have the same. so!utlons in

§5 The Gaierkm method fer ihe mtegra! equatmm

."Now we: use the results of ‘the procedmg sections in order to obtam
i _.-.dsymptotzc error estimates “of optimal order (in the energy norm) for ‘the
- Galerkin approximatlon of the solution of the integral equations (2.26). In
virtue of the equivalence. theoremn therefore we- approximate by the boundary

element method: the: solution  of the mixed boundary value problem (P). For

_the - stability of the Galerkin operator. we. need Garding’s mequalnty in L2(I'y)

x H=Y2(I'}); this corresponds to the [*(I)-scalar product, which is used for

the standard Galerkin equatzons However, 1f we - considered the original
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system- of mtegral equations’ (1. 20y we would be forced to formuidte the
“Galerkin equations with the scalar product in HU2(I', yx L),

For higher -convergence estimates we perform the Fix method, which
was successfully used for the boundary clemient method in the case of a
smooth curve in [58]. Here obviously. we have to augment the space of the
test and trial function with special singular terms, corresponding not only to
the change of boundary. conditions but also to the. corners. . Thus the error
dna}ym for the bounddry element mcthod is performed for a lot of problems
which ‘were oragmaiiy studied’ by ihe 2 D finite - element proceduae (L5
{12y : : : - L . :

5.1. The one- dtmens‘tona! ﬁmte elemcnt -spaces. used have the foilowmg
wnvcrgencc property (S 1) and inverse property (5. 2) whtch are both. weii
known for regular: finite: element furictions ([2]; 5] E447): :

For any Ue?” there exist a  UeSpP** with ¢33 dnd p=r dnd a
~ constant ¢ > 0 mdependcnt of I 'md U such that ior 4 < mm 'k 2

G U=Ol,,<arul,

Forg<re>0kzr there éxists 4 constant' M > 0, mdupendcm of such:

thdt fOI dll GES‘{:’! & _. .
62 I, s th 0L,
with & %O tf An[qwilz r —I/.’Z] @ where 1 = max [p, r!

The augmented Sobolev spaces Z" are defined in (4.98). Noté that J " is

only defined for r—1/2¢A4; where the set 4 of cxcept:onal t,xponentb is

defined i (4. 93). Therefore, if we write. || 1l J,,' we always' mean that the

condition r—1 /”qu is included, The augmented finite clements spaces -Sp*
- wili be deﬁned in Deﬁmtion 5.6. Fm the moment it is e:noué,h to know thdt
{(5.3) S”“‘c::?”"gn]“ (s < 'an‘d i -H‘f2(i AxH V2P ).

. This is-sufficient _to-derive-asymptot_ic. error estimates in these norms for the
Galerkin . ‘solution -~ corresponding. to. ‘the. -following - problem: * Find
U,eSP* < 22 such that for all VeSph*. . ; D

BAH UL = AUV

- where Ue2™: Later on U will be the solution- of ‘the . systcm of mtegral
equduans {2, 26) SO thdt (5 4) can also be wr;tten as.

(5 5) e <g;Uh’ V>f2m </g(; V} P

B where G dre the g:ven b()llﬂddly data. of problem (P) _ _ o
THE()REM 5.1 Let = 1/2 0 < h ho T hen the. Gaierkm operator o
" G“, U->U_ HW(I*)xﬁ 112(r)m+H1f2(r)xH UZ(F y o

correspondinq to: (5 A4) is umformly boanded mdependent 0 f o

sy <Dy, vya
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Proaf. By a result of Hildebrandt and Wienholtz ([22]; Lemma 5.2) the
convergence of the Galerkin equations follows. if a Girding inequality holds.
But unfortunately we have a Garding inequality. only for the wrong norms,
namely [2(I",) x FI~'2(I',). This difficulty will be overcome by using an idea
of Nitsche (5.13) for one part of the (2 x 2)-matrix G,. In addition a Garding
incquality in H'2(I',) x H~Y2(I'}) will be used for another part of G, (5.11).
We start ‘with the operator _'

ST B ' T+ Ky —W,
(5.6)-- - B -.__,_o!,.-—l. 0 'C'_J’ |
which in virtue of the proof of Theorem 2.19, differs from « only by a
compact perturbation. Wc reduce ezl by a compact. perturbation to an
opemtor : ' '

TIPS L R UL A o Dy ;VIZ o

By Lemma 5.2, below the resuit on the umform ‘boundedness of G, follows

from that on G, which is defined. analogously. The operators Dy, D, in
(5.7). have the following mcdnm_&, By (2.33} for C a Géirding inequality holds.
Therefore C'= D+ T,, where T,o H7Y2() - HYA(T,) is compact and D,
is posnwe deﬁmte i.e, there exists a K > 0 such that for all lj/eH‘ 2y

(58) S <Dt§b ‘!’>H1;2(, ),:g 1/2“ ,/ f||‘!’ﬂ,~; WZHH

S;mllarly, from (2.32), we deduce e
s% 1+1<22w1)2+~73

where .D2 sdt;s{ses thc: estlmdte

2 3 / 3 ” ”2 _: - _
1. ”zf %L (12) L (lzP
atid Tz s now compact noi oniy as an opetdtor in LZ(FZ) but alw in
H(T). o G
Our ncxt slep lS m show that

'(5 m -r_ b H”Z(F )M»H*ﬂ(r,_) is byesiwe ;

F‘mm the contmu;ty propertlcq of 1+K22 and. T2 in conmctmn w;th

5 9) we know that D, is contintious in H2(I";). From (5.10} it follows that

Dy s mjectlve Since by Theorem 2.24 the opeidtor I+ K, satisfics also a
* Garding ‘inequality in H”z(FZ) it is a Fredholm operator of index 0 in
~HMA(I,). Therefore D, is also of index 0 and' {hus bz]ectwe in HY?(I,).
- Using a technique. of Nitsche [45], we shiow that csperdtor ( in; is uniformly
~ bounded not only in [*(I",) bul even in H”z(I}) Here Gy, is defined by
Gyt v ve Sht “through the equations

(5.12) -_(Dzv,,--,_iwl;_” = Dy, Wy, » for all we Spr+.
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First 1t follows from (5.10) that Gp, is uniformly bounded in I2(I',).

'Hence together with the: convergence property (S ) and the mverse assump-
tion (5.2) w:th q =0, r=1/2 we: have: for ¥ = UI,2 - :

(5 13) HGDZ iz < 16, Mgty H =Mz,
el <Mho 1/2”(”,}2(0 v)i][}“ )“fa—cl[vlfﬂl,,z“. N S
S MG, flo— i +cH II
< (cMnc‘Dz;i zmuvn

/\

12(: } H*Izu }

_ : HUZU 3
Hence

(5‘14) “GDZ L;”HI‘IZU )\- {’HUHHH’Z” 2k for dny te Hllz(F) .
e o ' where is mdependent of h and v:

Note that, for g =0, =172, ?2"‘11, '~—~L2(Fz), 2, = H”Z(I‘) Now we
return (o system (5 7). The correspondmg Galerkin equdtmns are

A EHED.., - 5 i,
N 5.i5 .l = (] s
(: .) <[0 ] \ b 2y 0 . b, ¢; ¢ .32_{“_
for all {v eb)eS""‘ = H”Z(F )x A ”2(1"1} dnd dcﬁne G [:’J Lb J For
'the chmce i,[l O .v;fe .ha\.re G oy’ | [g]n-—»[: ] .Therefore (5 15) reduces to |

(516 <Dz Wy— szxf,, v>L-'z(, , = <D0, v>L2{, -

By (5 8} we know tlmt the Galerkm operator CD exms and_ is: umformly

bounded in H~2(r,). Thts implies’ that .17, y:eids s = 0. Therefore (5.16)
reduces to {5 12) Wthh means thdt Wy, = szv For the - cho:ce D= G (5 ES)
gives - _ _

(5.18) = . <Dz uh zz‘/frn ">L2(, } : <._“-f“ Vu'_l’;_"%z(rz,; -

Now (5.19) means . that \ilh""GD l/f, and (5 18} can be Written .as
(Dz u,,, ">L2u ) (DZ(DZ Via (W, — zﬁ}) v) whxch means. that

' uh"”"GDzD Vlz('.bh ‘/f) szl)z Vlz[(Gol""i)\l’]
'Now Loiicctmg the resu]ts we write _

. [sz sz'fo V12(Gp,~ 1)][”] o
Lo Gy ¥l
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- We have scen that G, and Gp, are uniformly bounded in H”"'(f ) and
H“”z(l’l) respecmely This implies also that :

" Gp, D3 ! Vu(Gn —1): bih ”’(F)"*H””(f)

is umformiy bounded due to the contmmty of Dle12 ﬁ”.”.‘""(l})
HI/Z(F) a - -y .

LfMMA 5, 2 {Hlidebrdnd and ernholtz [22). Let H be a Hilbert spaces
with a. dual H' (not. necessar:fy mdentzﬁed with . H) and A, D: H-H
zsomarphmms with T = A~ D: H-H Lompact Let S,,,,,,O be a family of
subspaces of H-such that the equations

(5.24) “{Dwy, v3 = (Dw, v) fm all VES,,
'de,fme an opemtor Gh: wis w,,eS,, with the property _
(522 . Gl w— w;|->0 ds - h-+0 for all weH

Then for small hthe equatrom - _
'(523) (Au;,, vy = (Au, v) Jor a:zves,, :

'defme an operamr Gh: uwu,,e Sy such rhat

“(’AH ) with C mdependent of h

Pmof Frgm (5 22) and th.e compdctness of T follows i!A T(l e ol
. () (h = 0). Thercfore for small hGl= GD{I — A4t T(I G ! exists. and

'_HG li is" umformly bounded From equatzons {5 21) and (5 23) it is edsﬂy
K -vcr:hed that G,, -—GA a ; _ SR . .

. _' . Remark 53 The assumptmns on D and SfI are fulﬁlled lf D is positive
" _definite, i.e; thcre exists a v 30 with [(Dw, w3 > y“wﬁz for-all we H, and

_there exists a uniformly” beunded family {P,,} of operators P,, H - S,, with
B i]P,,u ulj -0 (i > 0) for-all ueH:

With the umform ‘boundedness ot the Galerkm operator G in /2

_ (Theorem 5.1) and the reguldnty resuits (Theorcm 4.11) on the exact solution

- of /U= %G we are now able to derive higher convergence rates for the

* Galerkin | apprommatlon corresponding . to: (54)- for  smoother right-hand

- sides. This is a standard technique (see [52]), which uses convargence (5.1
Lo :__j_and stabxhty propert:es (5 2) of the ﬁmte eiement spaee-z SR

THEOREM Sd. Let 12 €r<s< 5/2 be: such that pi I/Z §e I/2¢A where

A is the: set of- excepttonal crponem.s defined in (4, 93), Let. Ue 22 be the
' -"emct sz)!unon of .the-sysiem of - integral -equations (2.26)-with Ge cmd let

9

UgeSE" o o be the:Galerkin wlunon of (5 5) Then far r< k SEp s

a0 and {}<h k() We h{we L

(524 WU =Vl < ke silug <'c_*h-‘-“’“8§|G]|§s_
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' where the constants ¢, ¢ > 0 are zndepen{iem of U, G and h, and & =0 for
[0, p—31nAd=¢ or r= /2.

Proof. Choosing Uespt* whiich qatxshes the convergence property
{5.1) and using the uniform boundednes% of G, in #'2 the projection
property. Gh,(j U and the ‘inverse. property. (5.2} of the finite - element
function G (U~ U)yeSp* & 77, we can cstimate the error:

{5.25) WU —Ull,, = lIU~ G@mu i, <Iv -0, +nodw U)Hr
R S, +Mh”’- G AT UMy
S oh' ’[jU[i - WiiGdH;,zh”"‘ i ‘élU U[iyuz
<l R

With the help of the a-priori wttmdté . 104 we thus obtdm (5 24} Nole that
for r=1/2 we do ot need the mversc propezty "

Remark 5.5 The convug_encc rate in (5.24) is opt:mai fo; o= é, wh:ch
means that the error i§ estimated in ihc energy -norm. We obtain L%~
esttmates for the error of the trace v if v > § and for the normal derivate Pt
r >3 in (5.24). Due-to the deﬁmnon of the norm in 2" {compare (4.100)). the
error estimates for the coefficients. (,jk of the singular parts of the solution are

obtained from (5. 24) for r zx}k+ 7 Thus the error for these coefhcnents is of

order p* Wk 1ATE whmh is a loss of order [ compdred with the energy

norm estlmate Estlmdte (5.24) is for r=1 of the same order as the
corre‘;pondmg energy norni est:mdte for the Galerkm dppr0x1mattom of the
‘solution of the varldtlond! problcm wh:ch are comiructed by means of 2D
finite element spaces dugmentcd by 1ht. smgular terms Of expansion (1 10 ) (cf
'[53 P 274)
"7 Next we define the dugmemed ﬁmte element SpdCCS S’”“ uscd and shou
'that they %atlsfy the assumed. propert:es (5:1). and (5. 2} The pardmeterq ir
Sff“‘ have (roughly) the following meaning. P P

iy O< h< h(, s the -mesh size of ‘the partition of 'T'; :

(n) ‘t-describes the degree of the pmcewzﬁe poiynomlal wh:ch consutui
thc ref,ular part of Sk : - :

- {iiiy-k describes confotmity, ie, S"”" c:f)"‘ :

- (iv) p-gives the number of . smgu!dr terms. uy, ‘included in - S””‘

More prec:sely, we hdve the following deﬁnmon

Di«immom 5.6. : _
(526} o ueSﬁ”‘. %:-u—«ug—!-z X },‘uﬂ(,{;
; E Iﬂc P B2 .
where cjke R is drbltrary, dnd ujk, X are as in the dehnmon of #7 (4. 98) ar_ .

“ﬁir = Vo, “olrf =g
A .

With the 't'%i'zﬂ functions
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fwnth v, belonging to a Shk-system. on Iy {Definition; see [5]; p. 83) and
. '-'3.',1:, ol e SETBE (¢% = max(1, t~1)) for each j with I < F,. Furthermore s,
' -:'and Yo hdve to satlsfy the foiiowmg conformrty cond:t:ons -which ensure thai

'_5'(1) no condltlon for k < 3/2

.-'.:'3'(;;) for. k = 3/2: "\, continuous at t; for: }eN and w;=m
i) \Elﬁ(t})a +vg(t;) with + for jEEMl, ;=72 or je My, w;=3n/2

' ‘and w1th — forje My, w;=nf2 or ]EM;, (o = Jyf2.

Note ‘that v,e S§* imphes that vy is"a piecewise po!yxmm:ai of degree
1 and’ vo€ HY(Is); similarly |, jeH“ s
“The Galerkin procedure (5. 5} reads more expkcxtly Find U,:=

"_'}..i__(vk, :[;,,}ESE”‘ such that . = . o
"'_'::-(527) <(I“{"K22)Uh i’iz%l’haf’)Lz{;z;xLZgrz)"i_

+_<K21 Kzzvh (Vn Kzi Vlz)'/’ﬁ! ‘5)3*!2(11“6’ ”3{113

--~».< K1291+VZZQZ, %Lz(fz}xl.z(lzj-!- -

S Kn K;Z)Qs“(VZI_ Kn Vzg)gz, 'ﬁ}HuzU”x‘q 1/2(,1)
S Lo cfor all (B, e spik,

oon Iy,

47 y,(l-—N’+1 N") -

| = ",kl,', UeDuMa
Unless jeM: and-'(v, !F) = Uy ihc system (5.27) can be written as equa-

'tlons on’ Fi and 5, alone. By th:s choice of test functions (5.28) and trial
; functtons (5. 29) (5. 30) the system turns out to be a quadratic system of linear

R .aigebrdlc equations which is ‘uniquely  solvable. “The - coefficictits of ' this
- stiffness matrix can be computed’ with quadrature formulas (Gauss, Newton,

Cotes,’ etc) (see [25} {33]} since ‘the scaiar products in (5.27) are [Z-scalar
products

LEMMA 57 T he ﬁmte element “spaces Si,’“‘ have properties (5.1), (5. 2}

’ tﬁ o Ba_nach Center P\_zblicmmns 15
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- Proof. For proving (5.1) we choose ¢, = ¢ for o <r~3 and ¢, = 0 for
ape(r—3%, p—~3), where ¢j are the coefﬁments in (526} and ¢, those in
(4.98). Thus it remains to estinrate the smooth parts, ie, fjus ~ugll,,, which
reduces to an ordinary Sobolev norm where we can apply the convergence
property of a Sp*-system. e :
Thus we even get the. estlmate

(531 U — ﬁliﬂ—iluo ﬂol!ﬂ\ h""lluoH,r < Ch' "HUIE o

The - inverse . property. (5. 2) for g<r<k and An[q VT w«ﬂ Q’)
(r = max (', p)) follows 1mmed1ateiy from the definition of . norms and the
inverse property of our Sy "—systems (cf {S] Theorem 4.1.3).

(532 IO1E, = !iuoll .t Z 2

eul” < MW‘** "uu nz
j=1 ujk«:rw 1[2 _

+ Z Z Eculz < Mzhz“‘ "EiUiiz
_ i=1 “Jk g 1[2 .
: Here we have used the fact that uoeS‘““ :s a p1ecew1se poiynomnal
“In what follows we use two. cstimates fot the approxzmatlon of the
smgular functions  uj; by piecewise polynomials ;e Sp*, namely.
{i) To any singular function. C; i x; there exists: a u,eS0 '__“ and cons-
tants. ¢, independent of h such that for all & > 0.

ch"'“/z q—&

C63) e ;x,ﬁuﬁll_qq ‘ﬂ'

for all q: <'min {k ot,,+1/2 s} Thls follows dlrectly from the. convergence

-property (5.1} applied to-the regular ﬁmte eicments Ay and ‘the functlon &

2 ’r
cj,uj, xje&“’ A (for all & > 0) conszdered a8 a smooth funcuon

_ (i) For any set of smgular functlons lc,,, u,, x,E I =1, 0 L} at the’ corner
t and any g <au+1/2( =1, L) there exists a constant ¥ mdependent of
h such that : : . _

(534) IIZcuunxj“*wj”ﬂ>?h""wz ‘e, 1'&3:'- all o =1, L

o and for ali regular wjeS‘:’”‘. (k q}

' Tins is analogous to Lemmd IS of [58] The. proof is given in Lcmma 59.
. For An[g—1/2,¥~1/2] # Q. we distinguish two. cases, from which

~ then the general case follows by induction. R :

1) Aniq-1/2, r=1/21=0 (p arbitrary). . e e

For UeSﬁ bk we use expans:on (5 26) to deﬁnc for q TEr

= bapett—12,p= 1/2) :

BCEC S S x
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Now for every aue{r—1/2, p—1/2) we take 4 as in (5.33). Then. we _have,
w1th the inverse property for regular ﬁmie elements

636, %(zs'u;ri; T

=1 a:_,,,<r* /2

”“tﬁ” E ): S “ﬂ”,@-r

= lajf@(r 1;2p-1;2}
K

_ + Y 2 fesuttsex;—~ ;zfiw"‘z Z feid

= lﬂﬂe(r ilzp lf i= laﬂ<r 1/2

-nuo+z: DR

i= lm,:s(q 1I2p 1432y

+Z E ”Cﬂ“ﬂ){j uﬂ” +Z Z E';I

i= 1a_,ze(q IIZP li) ;—-laﬂ<q 1:2 _

th '”“ +Z Z. .. : “ﬂ“_«yq
J Iaﬂe{q 1/2p 112

. + Z Z - 0‘11*‘1[2 -y &:.i.ﬂi+ Z Z [Cﬂf

J-—iaﬂe(q -1)2,p— 1[2) o i= luﬂ<q cRf2 .

e ;.‘.':-:._For tha ﬁrst term on - the’ r:ght hand szde we estlmate further

lluo+z Ly ﬂiiwnuqnfﬁz S lewtaz—igle

_er(q 1f2p-i R b laﬂ>q 12

““41 _{*I+ Z Z

-J“““Pe 1i2 v

£ '_':f'."_'(s 37)

aﬂ-i-lfz g=ey
- [jI'E-

haﬂ-i-l.,fz .r E’ J”_E_ el

: .._'_ I _";i”‘! 1/2

- 5 ): Z el

s = iuﬂ<q if2

f'-_-'f-Now we use (5 34) for w-'f= :_ - xj, ‘where’ xj is a cut«oﬂ‘ function which is
b .'j_'i on’ the support of x, Thus Zc jit X+ g §j = 7,4, and therefore for %,
"’.._->q 112 S ST .
1,’2 q 7] ;'2‘“1

ilxj H_zq < ?ch Hughl 5q-
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We insert th:s into’ (S 38) and obtdm
(S 40) .

' illl]l!r M‘h" r+2€ v Z Z h ’”‘iluqilﬂ-f- Z S leit
F=lag>q- yz Comlag<g- 142
s M bt il
2) There is one- ae A rx[q 1/2 r——l] (p arbitmry) Then we have the
followmg changes against ‘with respect to the prewous case:

(a) There is an addltlonai term Z Z | ,[_wh_n_eh m vxe_w 'o_f.(S'.'39)'can'

J Iaﬂ & R

be estlmdted by _ ) S
Ch* ‘ff*‘fnhqioa < et
{B) Instead of (5 37) we have : _
(541) ““0“’“ Z Z “ﬂ“gq . Z Z ”cﬂ_ !xlﬁgq o

B iex,;eir 172, p* 1/2) - i=la ,ma _
._ 'l"“uq”_?-q'*' Z E “cﬂ uﬂy,r ﬂ”_g-q"
1“1.’.!1!33'? 1f2 - . T ) .

Here the ﬁrst term on the nght hand sxde is esumated in view of (5.39), by

(542) el e = €leal < e CH 41
This glves compared w:th (5. 40}, an extrd term : 5
' ' M(, WOThT a= 1/2+q”uq” h2q Foas m““qﬁg;,'

Here the exponent is smaller than in (5 36) and so ih:s term dommates all
the’ others and we obtdzn finally :

(5-43)-' Hltlltﬂ,,r M, hz" T ”2”"!}54

" This holds for aII g sak 1/2, - and therefore we can 1mprove i m the
following way:"

Choose re(q, a+f/2)\.4 arbltraniy Then apply case (1) to T and ¢
instead of r and g (note that An]_"q——l/Z r——l/2} (D) and case {2) to r
and 1 mstead of r and q This gives ' _

(5-4_4)._ lttllgr Mhz’ e “Zliﬂll ot M’hz’ e ”zh" v “iluﬂﬂ :

wM hq r— (a+1f2 za s”u”

Now 7 is aibltldrlly ciose to oz+1/2 whence (5 44) can be written as -

(545) ' Hul[ﬂ M, bt fuun

N or by (5 48)
s (5 50) '
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The case where are several singular exponents between g | /2 and r— 1/2- is

easily reduced to the ‘previous case by induction..

o Remark 5.8. This proof‘ 18 .a generalization of the proof of Lemma 3. 1 in

[58], where a. corresponding result was proved for the case of a ‘smooth

curve and mixed boundary conditions y;eldmg the singular exponent & = = 1/2.

‘LeEMMa 5.9. For the regular _finite element spaces: Sy k- and the sing_z_dar

- functwns Uy we have rthe . mverse esnmare (5 34)

i','z—q ’

” Z ‘:}1 i Jff “ il oy # ’h _ fcﬂol

| for (1” I(}:I . L and ai!weSO”‘rfk qand aﬂ+1/2>q(!~=~1 o L)

Proof. It is sufficient to show thdt for every seR, ay, ..., 2 >s—1/2,

: e ;t':ka forj;ék we have .

1{2 5

(5.46} ' _ ”Z X' KJ PJ(J‘)EHS{M’W ICJJ .

o for every function p;e H“*(FJ) whteh is poiynom:al on [O h] If we th{: to
~estimate |} ¢ P then ‘we use the fact that ||- llge 2 Hllc In order to show

20 (5:46);, we assume first that there is a posuwe definite b:lmear form:¢-;~)
Cwith the properiies : :

L san nquligs(u; > 5-‘(?%5*'[5!#1’- 7.‘15'?0’*5%-.# - 'fO_r-.j'a;;.-_¢é ;;;:s_( 1y
: :_-:-and’.'?."' o o ' e o -. L e
B (548} (xJ‘ X ) h«f“‘* 2“.‘ Tajags Tor an % e > 5 1/2,- 5 i

0 < h h(,, where Ty ous > 0 are (.OnS[dntS not dependmg on e We define

X thlsf.z |

x*’ chx )q,,-w{) (]:::1 .+ NJ.
; '_I_a (N'——-1)>'<'( _—'u'l) system' of equations

Z ek(xf X }w Mc;(\J X

"hel'

LR “k ap o G gl - -
S Z Ck(h} h }’d ak,g = “{’lyxj,a'ps’_
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Thiss the  unique solution of this system is of the form -

(5.51) (W) =H' ey, (for all k="1,..., N'if we set Yo = l},
where Tkt do’ not depend on h and . Insertmg (5.51) 'in (5.49), we ﬁnd __
L Pl = (c,(h), s Can s Oy (R); ) = T zF‘mm(i 1)

and therefore
(5.52) Fler, .. ,c,.,;h) N e ”.‘I,P with - y_-ijn(l 1)>0

By [& 4‘?) we can deduce (5 46) from (5 52) 1f we put
Z c,x = —pj( x) for - xe{() h}

I=L+1

it remains to define ( . )s,, and to verlfy (5 47) (5 48} For SENQ we define

ds,

(¢> qf»)sh —ﬂ( )¢(x)
S0 tha_t

CE: nqbzi,,s(,,,/n¢n,,sm,,,/(¢ e

Similarly, for 5. -m+a me Ny, O‘E(O 1} we deﬁne wnh the Besov norm

instead -of -the Iﬂnorm L
d
(dx) ff’() ( )Q”(Y)

(¢ 4’)374 = J‘f

:x yt ““ﬂ’dxdy, |

and (5.53) agam holds because of the contmulty of the restrlctlon H*(F’)

- = H[0, h]. - -

in both cases (5 48} is easaly derwed by a change of zntcgratlon
'mr;abies : _ _ L
For § < 1/2 we can deﬁne

By D ;ucmmzi,,,sm )

Then (5 47) follows from the local: equivalence of norms (Lemma 2.6). By
-Parsevai’s equation (Lemma 2.2) we obtam by the Me]lm transform

G a+.;. L e
Jx"" ‘x dx = —i ; {im_;l <a):--- :
A v Lo

o Sl - .
h:xj+:lhczk JI

. | , N
¥ )M_.c f (1+Hl)“ml

fmi=5— 172
."____'haj+ak~2s+1c 5 (L+]AP%ypdi
S A (Auta})(l—i-m&)_'
S mimse 1z ¢

For 5< 1/2 th:s 1s ﬁnzte whlch proves (5 A8) for this case. a
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- As a final result we want to present an error estimate for a Galerkin
procedure with a different scalar product, namely that of H”Z(I‘z)x!_?(ﬂ)
instead of L*(I'} as in (5.5). This result s easily obtained by the methods used
above but based on the . Gérdmg mequahty of Theorem 2.24 instead of
Theorem 2.19. :

THEOREM 510 Let G" Mo be the Gaierkm operator defmed by G;,O"

' UHU,, where up eSf"‘ is the solutzon of

< Vlg bﬁ, v>ﬂ’”2 .__< ngﬁ U V> ”2 fbr.__.a”..vesg,l,k- :

. Here ( >;1/2 is deﬂned in (243} Then |

G" o H“z([‘)xﬁ ”Z(I‘)aH”z(F)xﬁ*”z{F)

s imzformly bounded mdependent of 0<h hy. Furthermore lf U is the
o exact s*olunon of %’QU = ngG there is an estimate Itke (5. 24) '

U s < 0

Pmdlly we demonstrate our error estimate (‘? 24) by an examp]e of a

S mxxed boundary value problem on a. L-shaped region which was numerically
treated by different methods 'in [27]. ‘Here the data sat:sfy the compatibillity

o conditions (4.95) (v): Therefcre Ged® for all's < 5/2'and thus the solution U

< of our system of integral equations (1.20) belongs to any 27 s < 5/2 ‘Hence,

S by (4 98) and the. deﬁmtion of the smgufar functions U contains two of them,
: '-_--.f_name]y at (() 0} : SRR -

Now lf we- take'.'as trlai functlons ,u, (cf l)cﬁmimn 5. 6) for v precew:se )

_ 'quadratxt:s and tnal functlons v; for- Y as piecewise: linear poiynomlals and
~furthermore uyy, u, 2 above, we have the error est:mate (5.24), which holds for
-any r < 5/2 with r ;é {5, 3‘+“z, 3'“'}"2} For r > 3 the trial functions have to
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satisfy ‘additional compatlbal:ty condltmns t00 d
by (5 24).we hdv{: S (See efinition 5.6) (iii)). Thuq

,ﬁ,fz

-dﬂd for the cc)efﬁcnents of the smgu!dr functlons Uyy, tyy

1611 Clll B o(h4f3 -e} . [622__612, ., O(h2/3~g)

o We dcﬁne the solution u in € as in Theorem 3 9 and the dppmmmdte
- 5!0 ution " “correspondingly. By Lemma 3.3 and, the Sobolev embedding
theorem we have the pomthse estrmate (choosmg ro 1/2+a in (5. 54})

”U hﬂme} CRU Uh”_yl,fzm'_*o(hz 8)
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