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ABSTRACT

Time-dependent problems that are modeled by initial-boundary value problems for parabolic or hyperbolic partial
differential equations can be treated with the boundary integral equation method. The ideal situation is when the
right-hand side in the partial differential equation and the initial conditions vanish, the data are given only on the
boundary of the domain, the equation has constant coefficients, and the domain does not depend on time. In this
situation, the transformation of the problem to a boundary integral equation follows the same well-known lines
as for the case of stationary or time-harmonic problems modeled by elliptic boundary value problems. The same
main advantages of the reduction to the boundary prevail: Reduction of the dimension by one, and reduction of an
unbounded exterior domain to a bounded boundary.

There are, however, specific difficulties due to the additional time dimension: Apart from the practical problems
of increased complexity related to the higher dimension, there can appear new stability problems. In the stationary
case, one often has unconditional stability for reasonableapproximation methods, and this stability is closely
related to variational formulations based on the ellipticity of the underlying boundary value problem. In the time-
dependent case, instabilities have been observed in practice, but due to the absence of ellipticity, the stability
analysis is more difficult and fewer theoretical results areavailable.

In this article, the mathematical principles governing theconstruction of boundary integral equation methods
for time-dependent problems are presented. We describe some of the main algorithms that are used in practice and
have been analyzed in the mathematical literature.

KEY WORDS: Space-time boundary integral equations; time domain; frequency domain; retarded potential;
anisotropic Sobolev norms

1. INTRODUCTION

Like stationary or time-harmonic problems, transient problems can be solved by the boundary integral
equation method. When the material coefficients are constant, a fundamental solution is known and the
data are given on the boundary, the reduction to the boundaryprovides efficient numerical methods in
particular for problems posed on unbounded domains.

Such methods are widely and successfully being used for numerically modeling problems in heat
conduction and diffusion, in the propagation and scattering of acoustic, electromagnetic and elastic
waves, and in fluid dynamics.

One can distinguish three approaches to the application of boundary integral methods on parabolic
and hyperbolic initial-boundary value problems: Space-time integral equations, Laplace-transform
methods, and time-stepping methods.
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2 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

1. Space-time integral equationsuse the fundamental solution of the parabolic or hyperbolicpartial
differential equations.

The construction of the boundary integral equations via representation formulas and jump relations,
the appearance of single layer and double layer potentials,and the classification into first kind and
second kind integral equations follow in a large part the formalism known for elliptic problems.
Causality implies that the integral equations are of Volterra type in the time variable, and time-
invariance implies that they are of convolution type in time.

Numerical methods constructed from these space-time boundary integral equations are global in
time, i. e. they compute the solution in one step for the entire time interval. The boundary is the lateral
boundary of the space-time cylinder and therefore has one dimension more than the boundary of the
spatial domain. This increase in dimension at first means a substantial increase in complexity:
- To compute the solution for a certain time, one needs the solution for all the preceding times since
the initial time.
- The system matrix is much larger.
- The integrals are higher-dimensional. For a problem with 3space dimensions, the matrix elements in
a Galerkin method can require 6-dimensional integrals.

While the increase in memory requirements for the storage ofthe solution for preceding times cannot
completely be avoided, there are situations where the othertwo reasons for increased complexity are
in part neutralized by special features of the problem:
- The system matrix has a special structure related to the Volterra structure (finite convolution in time)
of the integral equations. When low order basis functions intime are used, the matrix is of block
triangular Toeplitz form, and for its inversion only one block - which has the size of the system matrix
for a corresponding time independent problem - needs to be inverted.
- When a strong Huyghens principle is valid for the partial differential equation, the integration in the
integral representation is not extended over the whole lateral boundary of the space-time cylinder,
but only over its intersection with the surface of the backward light cone. This means firstly that
the integrals are of the same dimensionality as for time-independent problems, and secondly that the
dependence is not extended arbitrarily far into the past, but only up to a time corresponding to the time
of traversal of the boundary with the fixed finite propagationspeed. These “retarded potential integral
equations” are of importance for the scalar wave equation inthree space dimensions and to a certain
extent for equations derived from them, in electromagnetics and elastodynamics. On the other hand,
such a Huyghens principle is not valid for the wave equation in two space dimension, nor for the heat
equation nor for problems in elastodynamics nor in fluid dynamics.

2. Laplace transform methodssolve frequency-domain problems, possibly for complex frequencies.
For each fixed frequency, a standard boundary integral method for an elliptic problem is applied, and
then the transformation back to the time domain employs special methods for the inversion of Fourier or
Laplace transforms. The choice of a numerical method for theinverse Laplace transform can be guided
by the choice of an approximation of the exponential function corresponding to a linear multistep
method for ordinary differential equations. This idea is related to theoperational quadrature method
(Lubich, 1994).

Laplace or Fourier transform is also used the other way round, to pass from the time domain to the
frequency domain. This can be done using FFT in order to simultaneously solve problems for many
frequencies from one time-domain computation, or one can solve a time-domain problem with a time-
harmonic right hand side to get the solution for one fixed frequency. It has been observed that this can
be efficient, too (Sayah, 1998), due to less strict requirements for the spatial resolution.

3. Time-stepping methodsstart from a time discretization of the original initial-boundary value
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c© 2004 John Wiley & Sons, Ltd.



TIME-DEPENDENT BOUNDARY INTEGRAL EQUATION METHOD 3

problem via an implicit scheme and then use boundary integral equations to solve the resulting elliptic
problems for each time step. Here a difficulty lies in the formof the problem for one time step which
has non-zero initial data and thus is not in the ideal form foran application of the boundary integral
method, namely vanishing initial conditions and volume forces, and non-homogeneous boundary data.
The solution after a time step, which defines the initial condition for the next time step, has no reason
to vanish inside the domain. Various methods have been devised to overcome this problem:

Using volume potentials to incorporate the non-zero initial data often is not desirable, since it
requires discretization of the domain and thus defies the advantage of the reduction to the boundary.
Instead of a volume potential (Newton potential), another particular solution (or approximate particular
solution) of the stationary problem can be used. This particular solution may be obtained by fast
solution methods, for example FFT or a fast Poisson solver ona fictitious domain, or by meshless
discretization of the domain using special basis functions, like thin-plate splines or other radial basis
functions (so-calleddual reciprocity method, see Aliabadi and Wrobel, 2002).

Another idea is to consider not a single time step, but all time steps up to the final time together as a
discrete convolution equation for the sequence of solutions at the discrete time values. Such a discrete
convolution operator whose (time-independent) coefficients are elliptic partial differential operators
has a fundamental solution which can then be used to construct a pure boundary integral method
for the solution of the time-discretized problem. A fundamental solution, which is also a discrete
convolution operator, can be given explicitly for simple time discretization schemes like the backward
Euler method (“Rothe method” Chapko and Kress, 1997). For a whole class of higher order onestep
or multistep methods, it can be constructed using Laplace transforms via theoperational quadrature
method(Lubich and Schneider, 1992; Lubich, 1994).

These three approaches for the construction of boundary integral methods cannot be separated
completely. There are many points ofoverlap:

The space-time integral equation method leads, after discretization, to a system that has the same
finite time convolution structure one also gets from time-stepping schemes. The main difference is that
the former needs the knowledge of a space-time fundamental solution. But this is simply the inverse
Laplace transform of the fundamental solution of the corresponding time-harmonic problem.

The Laplace transform appears in several roles. It can be used to translate between the time domain
and the frequency domain on the level of the formulation of the problem, but also on the level of the
solution.

The stability analysis for all known algorithms, for the space-time integral equation methods as for
the time-stepping methods, passes by the transformation tothe frequency domain and corresponding
estimates for the stability of boundary integral equationsmethods for elliptic problems. The difficult
part in this analysis is to find estimates uniform with respect to the frequency.

Forparabolicproblems, some analysis of integral equation methods and their numerical realization
has been known for a long time, and the classical results for second kind integral equations on smooth
boundaries are summarized in the book by Pogorzelski (1966). All the standard numerical methods
available for classical Fredholm integral equations of thesecond kind, like collocation methods or
Nyström methods, can be used in this case. More recently, variational methods have been studied in
a setting of anisotropic Sobolev spaces that allow the coverage of first kind integral equations and
non-smooth boundaries. It has been found that, unlike the parabolic partial differential operator with
its time-independent energy and no regularizing property in time direction, the first kind boundary
integral operators have a kind of anisotropic space-timeellipticity (Costabel, 1990; Arnold and Noon,
1989; Brown, 1989; Brown and Shen, 1993).

This ellipticity leads to unconditionally stable and convergentGalerkin methods(Costabel, 1990;
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Arnold and Noon, 1989; Hsiao and Saranen, 1993; Hebeker and Hsiao, 1993). Because of their
simplicity, collocation methodsare frequently used in practice for the discretization of space-time
boundary integral equations. An analysis of collocation methods for second-kind boundary integral
equations for the heat equation was given by Costabelet al., 1987. Fourier analysis techniques for the
analysis of stability and convergence of collocation methods for parabolic boundary integral equations,
including first kind integral equations, have been studied more recently by Hamina and Saranen (1994)
and by Costabel and Saranen (2000; 2001; 2003).

The operational quadrature method for parabolic problems was introduced and analyzed by Lubich
and Schneider (1992).

For hyperbolicproblems, the mathematical analysis is mainly based on variational methods as well
(Bamberger and Ha Duong, 1986; Ha-Duong, 1990; Ha-Duong, 1996). There is now a lack of ellipticity
which on one hand leads to a loss of an order of regularity in the error estimates. On the other hand,
most coercivity estimates are based on a passage to complex frequencies, which may lead to stability
constants that grow exponentially in time. Instabilities (that are probably unrelated to this exponential
growth) have been observed, but their analysis does not seemto be complete (Becache, 1991; Peirce
and Siebrits, 1996; Peirce and Siebrits, 1997; Birgissonet al., 1999). Analysis of variational methods
exists for the main domains of application of space-time boundary integral equations: First of all for
the scalar wave equation, where the boundary integrals are given by retarded potentials, but also for
elastodynamics (Becache, 1993; Becache and Ha-Duong, 1994; Chudinovich, 1993c; Chudinovich,
1993b; Chudinovich, 1993a), piezoelectricity (Khutoryansky and Sosa, 1995), and for electrodynamics
(Bachelot and Lange, 1995; Bachelotet al., 2001; Rynne, 1999; Chudinovich, 1997). An extensive
review of results on variational methods for the retarded potential integral equations is given by Ha-
Duong (2003).

As in the parabolic case, collocation methods are practically important for the hyperbolic space-
time integral equations. For the retarded potential integral equation, the stability and convergence of
collocation methods has now been established (Davies, 1994; Davies, 1998; Davies and Duncan, 1997;
Davies and Duncan, 2003).

Finally, let us mention that there have also been important developments in the field offast methods
for space-time boundary integral equations (Michielssen,1998; Jiaoet al., 2002; Michielssenet al.,
2000; Greengard and Strain, 1990; Greengard and Lin, 2000).

2. SPACE-TIME INTEGRAL EQUATIONS

2.1. Notations

We will now study some of the above-mentioned ideas in closerdetail. LetΩ ⊂ Rn, (n ≥ 2), be
a domain with compact boundaryΓ. The outer normal vector is denoted byn and the outer normal
derivative by∂n.

Let T > 0 be fixed. We denote byQ the space-time cylinder overΩ andΣ its lateral boundary:

Q = (0, T ) × Ω ; Σ = (0, T ) × Γ ; ∂Q = ({0} × Ω) ∪ Σ ∪ ({T } × Ω) .

For the description of the general principles, we consider only the simplest model problem of each
type. We also assume that the right hand sides have the right structure for the application of a “pure”
boundary integral method: The volume sources and the initial conditions vanish, so that the whole
system is driven by boundary sources.
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Elliptic problem (Helmholtz equation with frequencyω ∈ C):

(∆ + ω2)u = 0 in Ω

u = g (Dirichlet) or∂nu = h (Neumann) onΓ (E)

radiation condition at∞

Parabolic problem (heat equation):

(∂t − ∆)u = 0 in Q

u = g (Dirichlet) or∂nu = h (Neumann) onΣ (P)

u = 0 for t ≤ 0

Hyperbolic problem (wave equation with velocityc > 0):

(c−2∂2
t − ∆)u = 0 in Q

u = g (Dirichlet) or∂nu = h (Neumann) onΣ (H)

u = 0 for t ≤ 0

2.2. Space-time representation formulas

2.2.1. Representation formulas and jump relationsThe derivation of boundary integral equations
follows from a general method that is valid (under suitable smoothness hypotheses on the data) in the
same way for all 3 types of problems. In fact, what counts for (P) and (H) is the property that the
lateral boundaryΣ is non-characteristic.

The first ingredient for a BEM is a fundamental solutionG. As an example, in 3 dimensions we
have, respectively:

Gω(x) =
eiω|x|

4π|x| (E)

G(t, x) =

{
(4πt)−3/2e−

|x|2

4t (t ≥ 0)
0 (t ≤ 0)

(P)

G(t, x) =
1

4π|x| δ(t−
|x|
c

) (H)

Representation formulas for a solutionu of the homogeneous partial differential equation andx 6∈ Γ
are obtained from Green’s formula, applied with respect to the space variables in the interior and
exterior domain. We assume thatu is smooth in the interior and the exterior up to the boundary,but
has a jump across the boundary. The jump of a functionv acrossΓ is denoted by[v] :

u(x) =

∫

Γ

{∂n(y)G(x − y)[u(y)] −G(x − y)[∂nu(y)]} dσ(y) (E)

u(t, x) =

∫ t

0

∫

Γ

{∂n(y)G(t− s, x− y)[u(s, y)] −G(t− s, x− y)[∂nu(y)]} dσ(y) ds (P)
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u(t, x) =

∫ t

0

∫

Γ

{∂n(y)G(t− s, x− y)[u(s, y)] −G(t− s, x− y)[∂nu(y)]} dσ(y) ds (H)

=

∫

Γ

{∂n(y)
1

4π|x− y| [u(t−
|x− y|
c

, y)] − ∂n(y)|x− y|
4πc|x− y| [∂tu(t−

|x− y|
c

, y)]

− 1

4π|x− y| [∂nu(t−
|x− y|
c

, y)] dσ(y)

Thus the representation in the parabolic case uses integration over the past portion ofΣ in the form of
a finite convolution over the interval[0, t], whereas in the hyperbolic case, only the intersection of the
interior of the backward light cone withΣ is involved. In 3D, where Huyghens’ principle is valid for
the wave equation, the integration extends only over the boundary of the backward light cone, and the
last formula shows that the integration can be restricted toΓ, giving a very simple representation by
“retarded potentials”.

We note that in the representation by retarded potentials, all those space-time points(s, y) contribute
to u(t, x) from where the point(t, x) is reached with speedc by traveling through the spaceR3. In the
case of waves propagating in the exterior of an obstacle thisleads to the seemingly paradoxical situation
that a perturbation at(s, y) can contribute tou(t, x), although no signal fromy has yet arrived inx,
because in physical space it has to travel around the obstacle.

All 3 representation formulas can be written in a unified way by introducing the single layer potential
S and the double layer potentialD :

u = D([u]) − S([∂nu]) . (1)

In all cases, there hold the classical jump relations in the form

[Dv] = v ; [∂nDv] = 0
[Sϕ] = 0 ; [∂nSϕ] = −ϕ

It appears therefore natural to introduce the boundary operators from the sums and differences of the
one-sided traces on the exterior (Γ+) and interior (Γ−) of Γ:

V := S
∣∣
Γ

(single layer potential)
K := 1

2 (D
∣∣
Γ+ + D

∣∣
Γ−) (double layer potential)

K ′ := 1
2 (∂nS

∣∣
Γ+

+ ∂nS
∣∣
Γ−) (normal derivative of single layer potential)

W := −∂nD
∣∣
Γ

(normal derivative of double layer potential)

2.2.2. Boundary integral equationsIn a standard way, the jump relations together with these
definitions lead to boundary integral equations for the Dirichlet and Neumann problems. Typically
one has a choice of at least 4 equations for each problem: The first 2 equations come from taking the
traces in the representation formula (1) (“direct method”), the third one comes from asingle layer
representation

u = Sψ with unknownψ

and the fourth one from adouble layer representation

u = Dw with unknownw :
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c© 2004 John Wiley & Sons, Ltd.



TIME-DEPENDENT BOUNDARY INTEGRAL EQUATION METHOD 7

For the exterior Dirichlet problem (u
∣∣
Γ

= g given,∂nu
∣∣
Γ

= ϕ unknown):

(D1) V ϕ = (− 1
2 +K)g

(D2) (1
2 +K ′)ϕ = −Wg

(D3) V ψ = g

(D4) (1
2 +K)w = g

For the exterior Neumann problem (u
∣∣
Γ

= g = v unknown,∂nu
∣∣
Γ

= h given):

(N1) (1
2 −K)v = −V h

(N2) Wv = −(1
2 +K ′)h

(N3) (1
2 −K ′)ψ = −h

(N4) Ww = −h
Remember that this formal derivation is rigorously valid for all 3 types of problems. One notes

that second-kind and first-kind integral equations alternate nicely. For open surfaces, however, only the
first-kind integral equations exist. The reason is that a boundary value problem on an open surface fixes
not only a one-sided trace but also the jump of the solution; and therefore the representation formula
coincides with a single layer potential representation forthe Dirichlet problem and with a double layer
potential representation for the Neumann problem.

The same abstract form of space-time boundary integral equations (D1)–(D4) and (N1)–(N4) is
obtained for more general classes of second order initial-boundary value problems. If a space-time
fundamental solution is known, then Green’s formulas for the spatial part of the partial differential
operator are used to get the representation formulas and jump relations. The role of the normal
derivative is played by the conormal derivative.

Since for time-independent boundaries the jumps across thelateral boundaryΣ involve only jumps
across the spatial boundaryΓ at a fixed timet, the jump relations and representation formulas for a
much wider class of higher order elliptic systems (Costabeland Dauge, 1997) could be used to obtain
space-time boundary integral equations for parabolic and hyperbolic initial-boundary value problems
associated to such partial differential operators. In the general case, this has yet to be studied.

2.2.3. Examples of fundamental solutionsThe essential requirement for the construction of a
boundary integral equation method is the availability of a fundamental solution. This can be a
serious restriction on the use of the space-time integral equation method, because explicitly given and
sufficiently simple fundamental solutions are known for farless parabolic and hyperbolic equations
than for their elliptic counterparts.

In principle, one can pass from the frequency domain to the time domain by a simple Laplace
transform, and therefore the fundamental solution for the time-dependent problem always has
a representation by a Laplace integral of the frequency-dependent fundamental solution of the
corresponding elliptic problem. In practice, this representation can be rather complicated. An example
where this higher level of complexity of the time-domain representation is visible, but possibly still
acceptable, is thedissipative wave equationwith a coefficientα > 0 (and speedc = 1 for simplicity)

(∂2
t + α∂t − ∆)u = 0

In the frequency domain, we obtain the same equation as for the wave equation withω simply replaced
byωα =

√
ω2 + iαω. The time-harmonic fundamental solution in three dimensions is therefore simply

Gωα(x) =
1

4π|x|e
i|x|

√
ω2+iαω
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From this we obtain by inverse Laplace transformation

G(t, x) =
e−αt/2

4π|x|

(
δ(t− |x|) +

α|x|
2
√
t2 − |x|2

I1(
α

2

√
t2 − |x|2) θ(t− |x|)

)

with the Dirac distributionδ, the Heaviside functionθ and the modified Bessel functionI1. We see
that there is no strong Huyghens principle, and the integrals in the corresponding space-time integral
equations will be extended over the whole intersection of the boundaryΣ with the solid backward light
cone{(s, y) | t− s > |x− y|}.

For the case ofelastodynamics, the corresponding space-time integral equations have notonly been
successfully used for a long time in practice (Mansur, 1983;Antes, 1985; Antes, 1988), but they have
also been studied mathematically. Isotropic homogeneous materials are governed by the second-order
hyperbolic system for then-component vector fieldu of the displacement

ρ∂2
t u− divσ = 0 with σij = µ(∂iuj + ∂jui) + λδij divu

Hereρ is the density, andλ andµ are the Lamé constants. The role of the normal derivative∂n is
played by the traction operatorTn whereTnu = σ · n is the normal stress. The role of the Dirichlet
and Neumann boundary conditions are played by the displacement and traction boundary conditions,
respectively:

u = g (displacement) orTnu = h (traction) onΣ

In three dimensions, the space-time fundamental solution shows the longitudinal (pressure) and
transversal (shear) waves that propagate with the two velocities

cp =

√
λ+ 2µ

ρ
andcs =

√
µ

ρ

But there is no strict Huyghens principle, the support of thefundamental solution is not contained
in the union of the two conical surfaces determined by these two speeds but rather in the closure of the
domain between these two surfaces. The fundamental solution is a(3 × 3) matrixG whose entries are
given by

Gjk(t, x) =
1

4πρ|x|3
{
t2
(
xjxk
|x|2 δ(t−

|x|
cp

) + (δjk −
xjxk
|x|2 )δ(t− |x|

cs
)

)

+t

(
3
xjxk
|x|2 − δjk

)(
θ(t− |x|

cp
) − θ(t− |x|

cs
)

)}

Hereδjk is the Kronecker symbol,δ is the Dirac distribution, andθ is the Heaviside function.
Detailed descriptions of the space-time boundary integralequations in elastodynamics

corresponding to (D1)–(D4) and (N1)–(N4) above can be foundin many places (Chudinovich, 1993b;
Chudinovich, 1993a; Becache and Ha-Duong, 1994; Brebbiaet al., 1984; Antes, 1988; Aliabadi and
Wrobel, 2002).

Whereas the frequency-domain fundamental solution is explicitly available for generalizations of
elastodynamics such as certain models of anisotropic elasticity or thermoelasticity (Kupradzeet al.,
1979) or viscoelasticity (Schanz, 2001b), the time-domainfundamental solution quickly becomes
very complicated (for an example in two-dimensional piezoelectricity see Wanget al. (2003), ), or
completely unavailable.
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For the case ofelectrodynamics, space-time integral equations have been used and analyzed
extensively, too, in the past dozen years (Pujols, 1991; Däschle, 1992; Terrasse, 1993; Bachelot and
Lange, 1995; Chudinovich, 1997). An analysis of numerical methods based on variational formulations
is available, and also the coupling of space-time integral equation methods with domain finite element
methods has been studied (Sayah, 1998; Bachelotet al., 2001).

Maxwell’s equations being a first order system, the above formalism with its distinction between
Dirichlet and Neumann conditions and between single and double layer potentials makes less sense
here. There are, however, additional symmetries that allowto give a very “natural” form to the space-
time boundary integral equations and their variational formulations. The close relationship between the
Maxwell equations and the scalar wave equation in 3 dimensions implies the appearance of retarded
potentials here, too.

The system of Maxwell’s equations in a homogeneous and isotropic material with electric
permittivity ε and magnetic permeabilityµ is

µ∂tH + curl E = 0

ε∂tE− curlH = 0

The speed of light isc = 1/
√
εµ, and the corresponding retarded potential can be abbreviated as

S(u)(t, x) =
1

4π

∫

Γ

u(t− |x−y|
c , y)

|x− y| dσ(y)

Then an analogue of representation formula (1) can be written in the following form:

E(t, x) = −µS(∂t[j])(t, x) +
1

ε
gradx S(∂−1

t divΓ[j])(t, x) − curlS([m])(t, x)

H(t, x) = −εS(∂t[m])(t, x) +
1

µ
gradx S(∂−1

t divΓ[m])(t, x) + curlS([j])(t, x)

where[j] and[m] are the surface currents and surface charge densities givenby the jumps acrossΣ:

[j] = [H ∧ n] ; [m] = [n ∧ E]

and∂−1
t is the primitive defined by

∂−1
t ϕ(t, x) =

∫ t

0

ϕ(s, x) ds

Taking tangential traces onΣ, one then obtains systems of integral equations analogous to (D1)–
(N4) for the unknown surface current and charge densities. Due tospecial symmetries of the Maxwell
equations, the set of four boundary integral operatorsV,K,K ′,W appearing in the boundary reduction
of second-order problems is reduced to only two different boundary integral operators which we denote
by V andK, defined by

Vϕ = −n ∧ S(
1

c
∂tϕ) + curlΓ S(c∂−1

t ϕ)

Kϕ =
1

2
(γ+ + γ−)n ∧ curlS(ϕ)
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In the definition ofK, one takes the principal value which corresponds also to themean value between
the exterior traceγ+ and the interior traceγ−, analogous to the definition of the double layer potential
operatorK in section 2.2.1.

For the exterior initial value problem, the traces

v = m = n ∧ E andϕ = µc j =

√
µ

ε
H ∧ n

then satisfy the two relations corresponding to the four integral equations(D1), (D2), (N1), (N2) of
thedirect method

(
1

2
− K)v = −Vϕ and(

1

2
− K)ϕ = Vv

From asingle layer representation, i.e. [m] = 0 in the representation formula for the electric field, one
obtains the time-dependentelectric field integral equationwhich now can be written as

Vψ = g

whereg is given by the tangential component of the incident field.

2.3. Space-time variational formulations and Galerkin methods

We will not treat the analysis of second-kind boundary integral equations in detail here. Suffice it to
say that the key observation in the parabolic case is the factthat for smoothΓ, the operator norm in
Lp(Σ) of the weakly singular operatorK tends to 0 asT → 0. This implies that12 ±K and1

2 ±K ′ are
isomorphisms inLp (and also inCm), first for smallT and then by iteration for allT . The operators
K andK ′ being compact, one can use all the well-known numerical methods for classical Fredholm
integral equations of the second kind, including Galerkin,collocation, Nyström methods (Pogorzelski,
1966; Kress, 1989), with the additional benefit that the integral equations are always uniquely solvable.
If Γ has corners, these arguments break down, and quite different methods, including also variational
arguments, have to be used (Costabel, 1990; Dahlberg and Verchota, 1990; Brown, 1989; Brown and
Shen, 1993; Adolfssonet al., 1994).

2.3.1. Galerkin methodsFor the first kind integral equations, an analysis based on variational
formulations is available. The corresponding numerical methods are space-time Galerkin methods.
Their advantage is that they inherit directly the stabilityof the underlying variational method. In the
elliptic case, this allows the well-known standard boundary element analysis of stability and errors,
very similar to the standard finite element methods. In the parabolic case, the situation is still similar,
but in the hyperbolic case, some price has to be paid for the application of “elliptic” techniques. In
particular, one has then to work with two different norms.

LetX be some Hilbert space and leta be a bilinear form onX ×X . If we assume thata is bounded
onX :

∃M : ∀u, v ∈ X : |a(u, v)| ≤M ‖u‖‖v‖
but thata is elliptic only with respect to a smaller norm‖ · ‖0, associated with a spaceX0 into which
X is continuously embedded:

∃α > 0 : ∀u ∈ X : |a(u, u)| ≥ α ‖u‖2
0

then for the variational problem: Findu ∈ X such that

a(u, v) = <f, v> ∀v ∈ X
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TIME-DEPENDENT BOUNDARY INTEGRAL EQUATION METHOD 11

and its Galerkin approximation: FinduN ∈ XN such that

a(uN , vN ) = <f, vN> ∀vN ∈ XN

there are stability and error estimates with a loss:

‖uN‖0 ≤ C ‖u‖ and‖u− uN‖0 ≤ C inf{‖u− vN‖ | vN ∈ XN}
The finite dimensional spaceXN for the Galerkin approximation of space-time integral equations

is usually constructed as a tensor product of a standard boundary element space for the spatial
discretization and of a space of one-dimensional finite element or spline functions on the interval[0, T ]
for the time discretization. Basis functions are then of theform

ϕij(t, x) = χi(t)ψj(x) (i = 1, . . . , I, j = 1, . . . , J)

and the trial functions are of the form

uN(t, x) =

I,J∑

i,j=1

αijϕij(t, x)

The system of Galerkin equations for the unknown coefficientsαij is

I,J∑

i,j=1

a(ϕij , ϕkl)αij = <f, ϕkl> (k = 1, . . . , I, l = 1, . . . , J)

In the following, we restrict the presentation to thesingle layer potential operatorV . We emphasize,
however, that a completely analogous theory is available for the hypersingular operatorW in all cases.

The variational methods for the first-kind integral operators are based on the first Green formula
which gives, together with the jump relations, a formula valid again for all 3 types of equations: Ifϕ
andψ are given onΓ or Σ, satisfy a finite number of conditions guaranteeing the convergence of the
integrals on the right hand side of the formula (2) below, and

u = Sϕ, v = Sψ ,
then ∫

Γ

ϕV ψ dσ =

∫

Rn\Γ
{∇u · ∇v + u∆v} dx . (2)

2.3.2. (E) For the elliptic case, we obtain (<·, ·>Γ denotesL2 duality onΓ);

<ϕ, V ϕ>Γ =

∫

Rn\Γ
(|∇u|2 − ω2|u|2) dx .

This gives the following theorem that serves as a model for the other two types. I holds not only for
the simple case of the Laplacian, but also, in particular itsassertion (ii), for more general second order
systems, including the Lamé system of linear elasticity (Costabel, 1988).

Theorem 2.1. Let Γ be a bounded Lipschitz surface, open or closed.H1/2(Γ) andH−1/2(Γ) denote
the usual Sobolev spaces, andH̃−1/2(Γ) for an open surface is the dual ofH1/2(Γ). Then
(i) For ω = 0, n ≥ 3: V : H̃−1/2(Γ) → H1/2(Γ) is an isomorphism, and there is anα > 0 such
that

<ϕ, V ϕ>Γ ≥ α‖ϕ‖2
H̃−1/2(Γ)

.
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12 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

(ii) For anyω andn, there is anα > 0 and a compact quadratic formk on H̃−1/2(Γ) such that

Re<ϕ, V ϕ>Γ ≥ α‖ϕ‖2
H̃−1/2(Γ)

− k(ϕ) .

(iii) If ω is not an interior or exterior eigenfrequency, thenV is an isomorphism, and every Galerkin
method inH̃−1/2(Γ) for the equationV ψ = g is stable and convergent.

2.3.3. (P) For the parabolic case of the heat equation, integration over t in the Green formula (2)
gives

<ϕ, V ϕ>Σ =

∫ T

0

∫

Rn\Γ
{|∇xu(t, x)|2 + ∂tuu} dx dt

=

∫ ∫
|∇xu(t, x)|2 dx dt+

1

2

∫

Rn

|u(T, x)|2 dx .

From this, the positivity of the quadratic form associated with the operatorV is evident. What is less
evident is the nature of the energy norm forV , however. It turns out (Arnold and Noon, 1989; Costabel,
1990) that one has to consider anisotropic Sobolev spaces ofthe following form

H̃r,s
0 (Σ) = L2(0, T ; H̃r(Γ)) ∩Hs

0(0, T ; L2(Γ)) .

The index0 indicates that zero initial conditions att = 0 are incorporated. The optional˜means zero
boundary values on the boundary of the (open) manifoldΓ. One has the following theorem which is
actually simpler than its elliptic counterpart, because the operators are always invertible, due to their
Volterra nature.

Theorem 2.2. LetΓ be a bounded Lipschitz surface, open or closed,n ≥ 2.

(i) V : H̃
− 1

2
,− 1

4

0 (Σ) → H
1
2
, 1
4

0 (Σ) is an isomorphism, and there is anα > 0 such that

<ϕ, V ϕ>Σ ≥ α‖ϕ‖2
− 1

2
,− 1

4

.

(ii) Every Galerkin method iñH
− 1

2
,− 1

4

0 (Σ) for the equationV ψ = g converges. The Galerkin matrices
have positive definite symmetric part. Typical error estimates are of the form

‖ϕ− ϕh,k‖− 1
2
,− 1

4
≤ C (hr+

1
2 + k(r+ 1

2
)/2)‖ϕ‖r, r

2
,

if ϕh,k is the Galerkin solution in a tensor product space of splinesof mesh-sizek in time and finite
elements of mesh-sizeh in space.

2.3.4. (H) For the wave equation, choosingϕ = ψ in the Green formula (2) does not give a positive
definite expression. Instead, one can chooseϕ = ∂tψ. This corresponds to the usual procedure for
getting energy estimates in the weak formulation of the waveequation itself where one uses∂tu as a
test function, and it gives

<∂tϕ, V ϕ>Σ =

∫ T

0

∫

Rn\Γ
{∂t∇xu · ∇xu+ ∂tu∂

2
t u} dx dt

=
1

2

∫

Rn\Γ
{|∇xu(T, x)|2 + |∂tu(T, x)|2} dx .
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Once again, as in the elliptic case, this shows the close relation of the operatorV with the total energy
of the system. In order to obtain a norm (H1(Q)) on the right hand side, one can integrate a second
time overt. But in any case, here the bilinear form<∂tϕ, V ϕ>Σ will not be bounded in the same norm
where its real part is positive. So there will be a loss of regularity, and any error estimate has to use two
different norms. No “natural” energy space for the operatorV presents itself.

2.4. Fourier-Laplace analysis and Galerkin methods

A closer view of what is going on can be obtained using space-time Fourier transformation. For this,
one has to assume thatΓ is flat, i. e. a subset ofRn−1. Then all the operators are convolutions and as
such are represented by multiplication operators in Fourier space. IfΓ is not flat but smooth, then the
results for the flat case describe the principal part of the operators. To construct a complete analysis, one
has to consider lower order terms coming from coordinate transformations and localizations. Whereas
this is a well-known technique in the elliptic and paraboliccases, namely part of the calculus of
pseudodifferential operators, it has so far prevented the construction of a completely satisfactory theory
for the hyperbolic case.

We denote the dual variables to(t, x) by (ω, ξ), andx′ andξ′ are the variables related toΓ ⊂ Rn−1.
It is then easily seen that the form of the single layer potential is

V̂ ψ(ξ′) =
1

2
(|ξ′|2 − ω2)−

1
2 ψ̂(ξ′) (E)

V̂ ψ(ω, ξ′) =
1

2
(|ξ′|2 − iω)−

1
2 ψ̂(ω, ξ′) (P)

V̂ ψ(ω, ξ′) =
1

2
(|ξ′|2 − ω2)−

1
2 ψ̂(ω, ξ′) (H)

Note that (E) and (H) differ only in the role ofω: For (E) it is a fixed parameter, for (H) it is one of the
variables, and this is crucial in the application of Parseval’s formula for<ϕ, V ϕ>.

2.4.1. (E) For the elliptic case, the preceding formula implies Theorem 2.1: If ω = 0, then the
function 1

2 |ξ′|−1 is positive and for large|ξ′| equivalent to(1 + |ξ′|2)−1/2, the Fourier weight defining
the Sobolev spaceH−1/2(Γ). If ω 6= 0, then the principal part (as|ξ′| → ∞) is still 1

2 |ξ′|−1, so only
a compact perturbation is added. There is an additional observation by Ha-Duong (1990): Ifω is real,
then 1

2 (|ξ′|2 − ω2)−
1
2 is either positive or imaginary, so its real part is positiveexcept on the bounded

set|ξ′| ≤ |ω|. This implies

Proposition 2.3. Letω2 > 0, Γ flat, suppϕ compact. Then there is anα(ω) > 0 such that

Re<ϕ, V ϕ>Γ ≥ α(ω) ‖ϕ‖2
H̃−1/2 .

The work of transforming this estimate into error estimatesfor the BEM in the hyperbolic case is
still incomplete. See Ha-Duong (2003) for a review of the state of the art on this question.

2.4.2. (P) For the parabolic case, the symbol of the single layer potential,

σV (ω, ξ′) =
1

2
(|ξ′|2 − iω)−

1
2

has again positive real part. In addition, it is sectorial:

| arg σV (ω, ξ′)| ≤ π

4
.
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14 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

This has the consequence that its real part and absolute value are equivalent (an “elliptic” situation):

C1

∣∣|ξ′|2 − iω
∣∣− 1

2 ≤ ReσV (ω, ξ′) ≤ C2

∣∣|ξ′|2 − iω
∣∣− 1

2 .

In addition, for large|ξ′|2 + |ω|, this is equivalent to
(
(1 + |ξ′|2) + |ω|

)−1/2
, the Fourier weight

defining the spaceH− 1
2
,− 1

4 (Σ). This explains Theorem 2.2. It also shows clearly the difference
between the single layer heat potential operator on the boundary and the heat operator∂t − ∆ itself:
The symbol of the latter is|ξ|2 − iω, and the real part|ξ|2 and the absolute value(|ξ|4 + |ω|2)1/2 of
this function are not equivalent uniformly inξ andω.

2.4.3. (H) In the hyperbolic case, the symbolσV does not have positive real part. Instead, one has to
multiply it by iω and to use a complex frequencyω = ωR + iωI with ωI > 0 fixed. Then one gets

Re
(
iω(|ξ′|2 − ω2)

1
2

)
≥ ωI

2
(|ξ′|2 + |ω|2) 1

2

and similar estimates given first by Bamberger and Ha Duong (1986). Note that with respect to|ω|,
one is losing an order of growth here. For fixedωI , the left hand side is bounded by|ω|2, whereas the
right hand side isO(|ω|). One introduces another class of anisotropic Sobolev spaces of the form

Hs,r(R × Γ) = {u | u, ∂rt u ∈ Hs(R × Γ)}
with the norm

‖u‖s,r,ωI =

∫

Imω=ωI

∫

Rn−1

|ω|2r(|ξ′|2 + |ω|2)s|û(ω, ξ′)|2 dξ′ dω .

We give one example of a theorem obtained in this way.

Theorem 2.4. LetΓ be bounded and smooth,r, s ∈ R. Then
(i) V : H̃s,r+1

0 (Σ) → Hs+1,r
0 (Σ) andV −1 : Hs+1,r+1(Σ) → H̃s,r

0 (Σ)
are continuous.

(ii) Let ωI > 0 and the bilinear forma(ϕ, ψ) be defined by

a(ϕ, ψ) =

∫ ∞

0

e−2ωIt

∫

Γ

(V ϕ)(t, x) ∂tψ(t, x) dσ(x) dt .

Then there is anα > 0 such that

Re a(ϕ,ϕ) ≥ αωI ‖ϕ‖2
− 1

2
,0,ωI

.

(iii) The Galerkin matrices for the scheme:FindϕN ∈ XN such that

a(ϕN , ψ) = <g, ∂tψ>Σ ∀ψ ∈ XN

have positive definite hermitian part, and there is an error estimate

‖ϕ− ϕN‖− 1
2
,0,ωI

≤ C ω
− 1

2

I inf
ψ∈XN

‖ϕ− ψ‖− 1
2
,1,ωI

.

Thus one has unconditional stability and convergence forωI > 0. In practical computations, one will
use the bilinear forma(ϕ, ψ) for ωI = 0 where the error estimate is no longer valid. Instabilities have
been observed that are, however, probably unrelated to the omission of the exponential factor. They are
also not caused by a too large CFL number (ratio between time step and spatial mesh width). In fact,
too small and too large time steps have both been reported to lead to instabilities.

Corresponding results for elastodynamics and for electrodynamics can be found in the literature
(besides the above-mentioned works, see the references given in Chudinovich (2001) and in Bachelot
et al. (2001), ).

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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2.5. Collocation methods

In order to avoid the high-dimensional integrations necessary for the computation of the matrix
elements in a Galerkin method such as the ones described in Theorems 2.2 and 2.4, one often uses
collocation methods. Just like in the elliptic case, even for the classical first kind integral operators for
the Laplace operator, the mathematical analysis lags seriously behind the practical experiences.

In more than two dimensions, only for very special geometries that are amenable to Fourier analysis,
stability of collocation schemes can be shown. For time-dependent integral equations, even two
space dimensions create problems that only recently have been overcome, and this only for special
geometries, mainly flat boundaries or toroidal boundaries.

Collocation schemes for the single layer potential integral equation (D3) are easy to formulate. One
usually takes basis functions of tensor product form, i. e.

ϕij(t, x) = χi(t)ψj(x)

whereχi(i = 1, . . . ,M) is a basis of a space of finite elements (splines) of degreedt on the interval
[0, T ], andψj(j = 1, . . . , N) is a basis of a space of finite elements of degreedx on the boundaryΓ.
Then the trial functions are of the form

ukh(t, x) =

M,N∑

i,j=1

αijϕij(t, x)

Here the indiceskh indicate the time stepk ∼ T/M and the mesh widthh of the discretization of the
boundaryΓ.

The linear system for the unknown coefficients is obtained from the equations

V ukh(ti, xj) = g(ti, xj)

whereti ∈ [0, T ](i = 1, . . . ,M) are the time collocation points andxj ∈ Γ(j = 1, . . . , N) are the
space collocation points. The collocation points are usually chosen in the “natural” way, meaning
midpoints for even degree splines in time, nodes for odd degree splines in time, barycenters for
piecewise constantsdx = 0, nodes of the finite element mesh onΓ for dx = 1, and more generally
nodes of suitable quadrature rules for other values ofdx.

2.5.1. (P) For the heat equation in a smooth domain in 2 space dimensions, it was shown in Costabel
and Saranen (2000, 2003) that fordt = 0, 1 one gets convergence in anisotropic Sobolev spaces of the
“parabolic” class defined in subsection 2.3.3. There is a condition for optimality of the convergence
which corresponds to a kind of anisotropic quasi-uniformity:

k ∼ h2

2.5.2. (H) For the retarded potential integral equation, that is, the equation of the single layer
potential for the wave equation in 3 space dimensions, Davies and Duncan (2003) prove rather complete
stability and convergence results for the case of a flat boundary.

3. LAPLACE TRANSFORM METHODS

To pass from the time domain to the frequency domain, we definethe (Fourier-) Laplace transform by

û(ω) = Lu(ω) =

∫ ∞

0

eiωt u(t) dt (3)
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16 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

If u is integrable with a polynomial weight or, more generally, atempered distribution, and if, as
we assume here throughout,u(t) = 0 for t < 0, then û is holomorphic in the upper half-plane
{ω = ωR + iωI | ωR ∈ R, ωI > 0}. The inversion formula is

u(t) = L−1u(t) =
1

2π

∫ ∞+iωI

−∞+iωI

e−iωt û(ω) dω (4)

Frequently, it is customary to define the Laplace integral by
∫ ∞

0

e−st u(t) dt

which is the same as (3) whens andω are related bys = −iω. The upper half-planeωI > 0 coincides
with the right half-planeRe s > 0.

The functiont 7→ u(t) can take values in some Banach space (Arendtet al., 2001), for example in a
space of functions depending onx, in which case we write

û(ω, x) = Lu(ω, x) =

∫ ∞

0

eiωt u(t, x) dt

By Laplace transformation, both the parabolic and the hyperbolic initial-boundary value problems
are transformed into elliptic boundary value problems withan eigenvalue parameterλ depending on
the frequencyω. Thus both the heat equation(∂t−∆)u = 0 and the wave equation(c−2∂2

t −∆)u = 0
are transformed into the Helmholtz equation(∆ − λ)û(ω, x) = 0, where

λ(ω) = −iω for the heat equation, and

λ(ω) = −ω
2

c2
for the wave equation

The idea of the Laplace transform boundary integral equation method is to solve these elliptic
boundary value problems for a finite number of frequencies with a standard boundary element method
and then to insert the results into a numerical approximation of the Laplace inversion integral (4).

There exist various algorithms for numerical inverse Laplace transforms, see for example Davies
and Martin (1979) or Abate and Whitt (1995). One will, in general, first replace the line of integration
{Imω = ωI} by a suitable equivalent contourC and then choose some quadrature rule approximation
of the integral. The end result will be of the form

u(t) =
1

2π

∫

C
e−iωt û(ω) dω ∼

L∑

`=1

w`e
−iω`t û(ω`) (5)

with quadrature weightsw` and a finite number of frequenciesω`.
One obvious candidate for such a quadrature formula is the trapezoidal rule on a large interval

[−R,R] where the line{Imω = ωI} is replaced by[−R,R] + iωI . This can then be evaluated by
Fast Fourier Transform which is clear when we write the Laplace inversion integral as inverse Fourier
transform over the real line:

u(t) = L−1û(t) = eωItF−1
ωR 7→t[û(ωr + iωI)]

Let us describe the resulting procedure in more detail for the formulation with a single layer potential
representation for the initial-Dirichlet problem, keeping in mind that any other type of boundary
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integral equation constructed in Section 2.2.2 would do as well and lead to a similar formalism. By
Laplace transform we get the boundary value problem

(∆ − λ(ω))û(ω, x) = 0 in Ω

û(ω, x) = ĝ(ω, x) onΓ

where the right hand side is the Laplace transform of the given boundary datag. For the unknown
densityψ we get the first kind integral equation onΓ

Vλ(ω)ψ̂(ω) = ĝ(ω) (6)

whereVλ(ω) is the weakly singular integral operator generated by convolution with the kernel (in three
dimensions)

Gλ(ω)(x) =
e
√
λ(ω)|x|

4π|x|
Now letVλ(ω),h be some finite dimensional boundary element approximation of Vλ(ω), so that

ψ̂h(ω) = V −1
λ(ω),hĝ(ω)

is the corresponding approximate solution of equation (6).Inserting this into the numerical inversion
formula (5) finally gives the following expression for the approximation of the unknown densityψ(t, x)
via the Laplace transform boundary element method

ψh(t, x) =

L∑

`=1

w`e
−iω`t

(
V −1
λ(ω`),h

ĝ(ω`)
)

(x) (7)

Note that on this level of abstraction, formula (7)looks the samefor the parabolic case of the heat
equation, the hyperbolic case of the wave equation, or even the dissipative wave equation. The only
difference is the functionλ(ω) which then determines, depending on the contourC and its discretization
ω`, for which complex frequencies

√
−λ(ω`) the single layer potential operator has to be numerically

inverted.
For the practical computations, this difference can be essential: In a precise quadrature rule in (5)

which is needed for high resolution in time, there will be someω` with large absolute values. In the
hyperboliccase (but not in theparaboliccase!), this means large negative real parts forλ(ω`), hence
highly oscillating kernels, and some machinery for high-frequency boundary element methods has to
be put in place (see, for example, Bruno (2003)).

Applications of the Laplace transform boundary integral equation methods in elastodynamics have
a long history (Cruse and Rizzo, 1968; Cruse, 1968). For generalizations such as viscoelasticity,
poroelasticity or piezoelectricity, these methods are more practical than the space-time boundary
integral equation methods, because space-time fundamental solutions are not explicitly known or very
complicated (Gaul and Schanz, 1999; Schanz, 1999; Schanz, 2001a; Wanget al., 2003). Recently,
Laplace domain methods related to the operational quadrature method (see subsection 4.4) have been
used successfully in practice (Schanz and Antes, 1997b; Schanz and Antes, 1997a; Schanz, 2001b;
Telles and Vera-Tudela, 2003).

A final remark on the Laplace transform boundary element method: Instead of, as described in this
section, performing first the Laplace transform and then thereduction to the boundary, one can also
first construct the space-time boundary integral equationsas described in the previous section and then
apply the Laplace transform. It is easy to see that the resulting frequency-domain boundary integral
equations are exactly the same in both procedures.
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4. TIME-STEPPING METHODS

In the previous sections, the boundary reduction step was performed before any discretization had
taken place. In particular, the description of the transient behavior of the solution by a finite number of
degrees of freedom was introduced, via a Galerkin or collocation method for the space-time integral
equation or via numerical Laplace inversion, only after theconstruction of the boundary integral
equation.

It is possible to invert the order of these steps by first applying a time discretization scheme to the
original initial-boundary value problem and then using a boundary integral equation method on the
resulting problem that is discrete in time and continuous inspace. One advantage of this idea is similar
to the motivation of the Laplace transform method: The parabolic and hyperbolic problems are reduced
to elliptic problems for which boundary element techniquesare well known. Another attraction is the
idea that once a procedure for one time-step is constructed,one can march arbitrarily far in time by
simply repeating this same procedure.

In this section we will, for simplicity, only treat the parabolic case of the initial-Dirichlet problem
for the heat equation. Quite analogous procedures are possible also for the hyperbolic case, and
in particular theoperational quadrature methodhas been analyzed for both the parabolic and the
hyperbolic situation, see Lubich (1994). In the literatureon applied boundary element methods, one
can find many successful applications of similar time-stepping schemes to parabolic and hyperbolic
problems of heat transfer, fluid dynamics, elastodynamics and various generalizations (Nardini and
Brebbia, 1983; Partridgeet al., 1992; Gaulet al., 2003).

4.1. Time discretization

We consider the initial-boundary value problem

(∂t − ∆)u(t, x) = 0 in Q

u = g onΣ (8)

u(t, x) = 0 for t ≤ 0

as an ordinary differential equation in time with operator coefficients. Consequently, we can employ
any kind of one-step or multistep method known from the numerical analysis of ordinary differential
equations. Onlyimplicit schemes are of interest here, for two reasons: The first reason is the stability
of the resulting scheme and secondly, explicit schemes would not really require a boundary integral
equation method.

The solutionu(t, x) for 0 ≤ t ≤ T is approximated by a sequenceun(x), n = 0, . . . , N , where

un is understood as an approximation ofu(tn, ·), tn = nk = nT/N

The simplest discretization of the derivative∂t with timestepk is the backward difference, which gives
thebackward Eulerscheme for (8)

un − un−1

k
− ∆un = 0 in Ω (n = 1, . . . , N)

un(x) = gn(x) = g(tn, x) onΓ (n = 1, . . . , N) (9)

u0 = 0 for t ≤ 0

The actual elliptic boundary value problem that one has to solve at each time step,n = 1, . . . , N is
therefore

un − k∆un = un−1 in Ω ; un = gn onΓ (10)
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Higher order approximation in time can be achieved by multistep methods of the form

r∑

j=0

αju
n−j − k

r∑

j=0

βj∆u
n−j = 0 in Ω ; un = gn onΓ (11)

The coefficientsαj andβj define the characteristic function of the multistep scheme

δ(ζ) =

∑r
j=0 αjζ

j

∑r
j=0 βjζ

j

Consistency of the scheme (11) is characterized byδ(1) = 0, δ′(1) = −1, and the scheme is accurate
of orderp if δ(e−z)/z = 1 + O(zp) asz → 0. One can assume thatα0β0 > 0.

4.2. One step at a time

The problem to solve for one time step in both (10) and (11) is of the form

η2u− ∆u = f in Ω ; u = g onΓ (12)

Hereη2 = 1/k for (10) andη2 = α0/(kβ0) for (11). The right hand sidef is computed from the
solution of the previous time step(s), and it has no reason tovanish except possibly for the very first
time step. For the integral equation method, we therefore have to apply a representation formula that
takes into account this inhomogeneous differential equation.

Let up = Pf be a particular solution of the equationη2up − ∆up = f in Ω. Thenu0 = u − up
satisfies the homogeneous equation and can therefore be computed by a standard boundary integral
equation method, for example by one of the methods from Section 2.2. For an exterior domain, we thus
have the representation formula inΩ

u0(x) =

∫

Γ

{∂n(y)G(x− y)u0(y) −G(x− y)∂nu0(y)} dσ(y)

= D(γ0u0)(x) − S(γ1u0)(x)

HereG is the fundamental solution of the Helmholtz equation givenin the three-dimensional case by

G(x) =
e−η|x|

4π|x|
Using our abbreviations for the single and double layer potentials and

γ0u = u
∣∣
Γ

; γ1u = ∂nu
∣∣
Γ

we have the representation foru

u = D(γ0u) − S(γ1u) + Pf − D(γ0Pf) + S(γ1Pf) (13)

For the unknownϕ = γ1u in the direct method for the Dirichlet problem or for the unknownψ in a
single layer potential representation

u = Sψ + Pf (14)

or the unknownw in a double layer representation

u = Dw + Pf (15)
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c© 2004 John Wiley & Sons, Ltd.



20 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

this leads to the choice of integral equations

(D1) V ϕ = (− 1
2 +K)g + (1

2 −K)γ0Pf + V γ1Pf

(D2) (1
2 +K ′)ϕ = −Wg +Wγ0Pf + (− 1

2 +K ′)γ1Pf

(D3) V ψ = g − γ0Pf

(D4) (1
2 +K)w = g − γ0Pf

These are standard boundary integral equations that can be discretized and numerically solved in many
ways. The one peculiarity is the appearance of the particular solutionPf in the representation formula
(13) and in the integral equations(D1)–(D4).

There are various possibilities for the construction of (anapproximation of)Pf . Let us mention
some of them that are being used in the boundary element literature and practice:

4.2.1. Newton potential In the standard representation formula for the inhomogeneous Helmholtz
equation derived from Green’s formula,Pf appears in the form

Pf(x) =

∫

Ω

G(x − y) f(y) dy

This representation has the advantage that the last two terms in the representation formula (13) cancel,
and therefore also the integral equations(D1) and(D2) simplify in that the integral operators acting on
the traces ofPf are absent. For computing the Newton potential, the domainΩ has to be discretized,
thus neutralizing one of the advantages of the boundary element method, namely the reduction of
the dimension. Note, however, that this domain discretization is done only for purposes of numerical
integration. No finite element grid has to be constructed. Itis also to be noted that the domain
discretization only enters into the computation of the right hand side; the size of the linear system
to be solved is not affected.

4.2.2. Fourier series Another method to get an approximate particular solutionPf is to embed the
domainΩ into a rectangular domain̂Ω, then approximate an extension off to Ω̂ by trigonometric
polynomials using Fast Fourier Transform, solve the Helmholtz equation in Fourier space, and go back
by FFT again. Other fast Helmholtz solvers that exist for simple domains can be used in the same way.

4.2.3. Radial basis functionsIn the previous subsections, the right hand sidef was approximated
by a linear combination of special functions for which particular solutions of the Helmholtz equation
are known: the Dirac distribution for the Newton potential method, and exponential functions for the
FFT method. The particular solutionPf is then given by the corresponding linear combination of the
individual particular solutions. Other special functionsthat can serve in the same way are radial basis
functions, in the simplest case functions of the form|x−xj |, where thexj belong to some discretization
of Ω by an unstructured grid. One advantage of the radial basis function technique is that there exist
many practical and theoretical results about interpolation by such functions (Powell, 1992; Faul and
Powell, 1999).

4.2.4. Higher fundamental solutionsIn the first time step, the solutionu = u1 is given, after solving
the appropriate boundary integral equations, by the representation formula (13) withf = 0, i.e. by a
combination of single and double layer potentials. Thisu1 is then used as right hand sidef in the next
time step. A particular solutionPf can then be found, without any domain integral, by replacingthe
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fundamental solutionG of (η2 − ∆) in the representation formula by a fundamental solutionG(1) of
(η2 − ∆)2 satisfying

(η2 − ∆)G(1)(x) = G(x)

Thus if

f(x) =

∫

Γ

{∂n(y)G(x− y)w(y) −G(x− y)ϕ} dσ(y)

then a particular solutionPf is given by

Pf(x) =

∫

Γ

{∂n(y)G
(1)(x − y)w(y) −G(1)(x − y)ϕ} dσ(y)

In the next time step, the right hand side is then constructedfrom single and double layer potentials
plus thisPf . Repeating the argument, one obtains a particular solutionby using a fundamental solution
G(2) of (η2−∆)3. In then-th time step, one then needs to use higher order fundamentalsolutionsG(j),
(j < n) which satisfy the recurrence relations

(η2 − ∆)G(j+1)(x) = G(j)(x)

Such functionsG(j) can be given explicitly in terms of Bessel functions. In thisway, the whole time
marching scheme can be performed purely on the boundary, without using domain integrals or any
other algorithm requiring discretization of the domainΩ. Two other points of view that can lead,
eventually, to an entirely equivalent algorithm for the time-discretized problem, are described in the
following sections.

4.3. All time steps at once

Just as in the construction of the space-time integral equations the heat equation or wave equation
was not considered as an evolution equations, i.e. an ordinary differential equation with operator
coefficients, but as a translation invariant operator onR1+n whose fundamental solution was used
for integral representations, one can consider the time-discretized problem as a translation invariant
problem onZ×R

n and construct a space-time fundamental solution for this semi-discretized problem.
The role of the time derivative is then played by its one-stepor multi-step discretization as in (10) or
(11), and the role of the inverse of the time derivative and ofother finite time convolutions appearing
in the space-time integral operators is played by finite discrete convolutions.

In simple cases, such discrete convolution operators can beinverted explicitly. For a two-part
recurrence relation such as the backward Euler method (9), the convolution operator can be represented
by a triangular Toeplitz matrix with just one lower side diagonal. LetU denote the vectoru1, . . . , uN

and defineG correspondingly. Then the backward Euler scheme (10) can bewritten as a system

AU = 0 in Ω ; U = G onΓ (16)

HereA is an elliptic system of second order, given by the matrix elements

aj,j = 1 − k∆; aj,j−1 = −1 ; all otherai,j = 0

Once a fundamental solution of this system is found, the system of equations (16) can be solved
numerically by standard elliptic boundary element methods. Due to the simple form ofA, such a
fundamental solution can be written using the higher fundamental solutionsG(j) of the Helmholtz
equation defined in section 4.2.4. It is a lower triangular Toeplitz matrixG with entries(gi,j), where

gj,j(x) = G(x) ; gi,j(x) = G(i−j) for j < i ; gi,j(x) = 0 for j < i
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All boundary integral operators constructed from this fundamental solution will have the same lower
triangular Toeplitz (finite convolution) structure, and their solutions can be found by inverting the single
operator that generates the diagonal and by subsequent backsubstitution.

For a detailed description of the approximation of the two-dimensional initial-Dirichlet problem for
the heat equation using such a method, including formulas for the kernels inG and a complete error
analysis of the resulting second kind integral equation as well as numerical results, see Chapko and
Kress (1997).

4.4. The operational quadrature method

In the previous section, the simple structure of the backward Euler scheme was essential. The resulting
numerical approximation is of only first order in time. If onewants to use schemes that are of higher
order in time, one can employ multistep methods as describedabove. The resulting schemes still
have the lower triangular Toeplitz structure of finite discrete convolutions in time. From the algebraic
structure of these convolutions it is clear that also fundamental solutions, resulting boundary integral
operators, and their solution operators all have this finiteconvolution structure.

Explicit constructions of kernels, however, will not be possible, in general. Just as for the original
continuous-time problem the appropriate functional transform, the Laplace transform, allowed the
reduction of the parabolic to elliptic problems, here for the discrete-time problem one can use the
appropriate functional transform, namely thez-transform. In order to conserve the approximation
order of the multistep method, one has to use a certain translation between continuous convolutions
and discrete convolutions or equivalently, between Laplace transforms andz-transforms.

For the generators of the convolution algebras, namely the derivative∂t in the continuous case and
its timestepk discretization∂kt , this translation is given by the definition (11) of the multistep method,
characterized by the rational functionδ(z). For the whole convolution algebras, this translation leads
to the discretization method described by Lubich’soperational quadraturemethod, see Lubich and
Schneider (1992); Lubich (1994). The general translation rule is the following (we use our notation for
the (Fourier-)Laplace transform introduced above, not Lubich’s notation):

Denote a finite convolution operator with operator-valued coefficients by

K̂(i∂t)u(t) = L−1
ω 7→t(K̂(ω)û(ω))

If K̂(ω) decays sufficiently rapidly in the upper half plane, this operator is given by an integrable kernel
K whose Laplace transform iŝK(ω):

K̂(i∂t)u(t) =

∫ t

0

K(s)u(t− s) ds

The corresponding discrete convolution operator is given by

(K̂(i∂kt )u)n =

n∑

j=0

Kj un−j

where the coefficientsKj are defined by theirz-transform

∞∑

j=0

Kj z
j = K̂(i

δ(z)

k
)

Herek is the time step, andδ(z) is the characteristic function of the multistep method.
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The inverse of thez-transform is given by the Cauchy integral over some circle|z| = ρ

Kj =
1

2πi

∫

|z|=ρ
K̂(i

δ(z)

k
) z−j−1 dz

It is not hard to see that this translation rule reduces, for the case of the derivative∂t = K̂(i∂t) with
K̂(ω) = −iω, to the convolution defined by the characteristic functionδ(z):

∂kt un =

n∑

j=0

δj un−j with δ(z) =

∞∑

j=0

δj z
j

In addition, this translation rule is an algebra homomorphism, i.e. it respects compositions of (operator-
valued) convolution operators. This is easy to see, because

K̂1(i∂t)K̂2(i∂t) = (K̂1K̂2)(i∂t) and alsoK̂1(i∂
k
t )K̂2(i∂

k
t ) = (K̂1K̂2)(i∂

k
t )

By the relationz = eiωk, one can see the analogy between the Cauchy integral over|z| = const with
measurez−j−1 dz and the Laplace inversion integral for the timet = tj = jk overImω = const with
measuree−itjω dω.

This operational quadrature method can be applied at several different stages of an integral equation
method for the time-discretized initial value problem:

It can be used to find a fundamental solution for the whole system in the form of a Cauchy integral
over the frequency domain fundamental solutionsGω . We get for the coefficientsgj of the semi-
discrete space-time fundamental solutionG(i∂kt ) the formula

gj(x) =
1

2πi

∫

|z|=ρ
Gω(z)(x) z

−j−1 dz with ω(z) = i
δ(z)

k

This integral over holomorphic functions can be evaluated numerically with high speed and high
accuracy using the trapezoidal rule and FFT. In simple cases, it can be evaluated analytically, for
example in the case of the backward Euler method, where we have the simple characteristic function

δ(z) = 1 − z

The Cauchy integral then gives the higher order fundamentalsolutionsG(j) of the previous section.
This fundamental solutionG(i∂kt ) can then be used in a standard boundary element method, keeping

in mind that the time-discretized solution will be obtainedby finite convolution.
The operational quadrature scheme can also (and equivalently) be introduced at a later stage in

the integral equation method, after the frequency domain integral equations have been solved. Let us
describe this at the example of the single layer representation method for the initial-Dirichlet problem
of the heat equation.

The space-time single layer heat potential operator onΣ can be written asV = V̂ (i∂t) , whereV̂ (ω)
is the frequency-domain single layer potential operator onΓ whose kernel is the fundamental solution
of the Helmholtz operator(−iω − ∆). InvertingV amounts to evaluating the Cauchy integral of the
inversez-transform where the frequency-domain single layer integral equations have been solved for
those frequencies needed for the Cauchy integral. For the approximationψn of the solutionψ(tn) at
the timetn = nk with time stepk and a space discretizationVh(ω) of V (ω) one obtains then

ψn =
1

2π

∫

|z|=ρ
Vh(i

δ(z)

k
)−1




n∑

j=0

gn−j z
−j−1


 dz (17)
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This can be compared to the Laplace inversion integral (5) where the contourC is the image of the
circle |z| = ρ under the mappingz 7→ ω = i δ(z)k . When the Cauchy integral in (17) is evaluated
numerically by a quadrature formula, we obtain an end resultthat has a form very similar to what we
got from the Laplace transform boundary element method in formula (7).

In the papers Lubich and Schneider (1992); Lubich (1994), the operational quadrature method
has been analyzed for a large class of parabolic and hyperbolic initial-boundary value problems
and multistep methods satisfying various stability conditions. Recent computational results show its
efficiency in practice (Schanz and Antes, 1997b; Schanz and Antes, 1997a).
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méthode de potentiels retardés.Thèse de doctorat. Ecole Polytechnique. 1993.

Wang CY, Zhang C and Hirose S. Dynamic fundamental solutionsand time-domain BIE formulations
for piezoelectric solids.in R. Gallego and MH. Aliabadi (eds),Advances in Boundary Element
Techniques IV. Dept. of Engineering, Queen Mary. University of London. 2003. pp. 215–224.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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