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ABSTRACT

Time-dependent problems that are modeled by initial-bamndalue problems for parabolic or hyperbolic partial
differential equations can be treated with the boundamgral equation method. The ideal situation is when the
right-hand side in the partial differential equation and ithitial conditions vanish, the data are given only on the
boundary of the domain, the equation has constant coeffi;iand the domain does not depend on time. In this
situation, the transformation of the problem to a boundatggral equation follows the same well-known lines
as for the case of stationary or time-harmonic problems thedday elliptic boundary value problems. The same
main advantages of the reduction to the boundary prevailuBtn of the dimension by one, and reduction of an
unbounded exterior domain to a bounded boundary.

There are, however, specific difficulties due to the addititime dimension: Apart from the practical problems
of increased complexity related to the higher dimensioergftan appear new stability problems. In the stationary
case, one often has unconditional stability for reasonapfgroximation methods, and this stability is closely
related to variational formulations based on the ellipyioff the underlying boundary value problem. In the time-
dependent case, instabilities have been observed in geattit due to the absence of ellipticity, the stability
analysis is more difficult and fewer theoretical resultsaalable.

In this article, the mathematical principles governing ¢toastruction of boundary integral equation methods
for time-dependent problems are presented. We describe gbtine main algorithms that are used in practice and
have been analyzed in the mathematical literature.

KEY WORDS: Space-time boundary integral equatiorisne domain; frequency domain; retarded potential;
anisotropic Sobolev norms

1. INTRODUCTION

Like stationary or time-harmonic problems, transient peais can be solved by the boundary integral
equation method. When the material coefficients are copstémndamental solution is known and the
data are given on the boundary, the reduction to the bourmtarydes efficient numerical methods in
particular for problems posed on unbounded domains.

Such methods are widely and successfully being used for ncatlg modeling problems in heat
conduction and diffusion, in the propagation and scattedhacoustic, electromagnetic and elastic
waves, and in fluid dynamics.

One can distinguish three approaches to the applicatioowfdary integral methods on parabolic
and hyperbolic initial-boundary value problems: Spaceetiintegral equations, Laplace-transform
methods, and time-stepping methods.
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2 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

1. Space-time integral equationse the fundamental solution of the parabolic or hyperhaitial
differential equations.

The construction of the boundary integral equations viagsgntation formulas and jump relations,
the appearance of single layer and double layer potengal$ the classification into first kind and
second kind integral equations follow in a large part theriaism known for elliptic problems.
Causality implies that the integral equations are of Vo#telype in the time variable, and time-
invariance implies that they are of convolution type in time

Numerical methods constructed from these space-time laoyridtegral equations are global in
time, i. e. they compute the solution in one step for the ertitme interval. The boundary is the lateral
boundary of the space-time cylinder and therefore has anemiion more than the boundary of the
spatial domain. This increase in dimension at first meansstantial increase in complexity:

- To compute the solution for a certain time, one needs thatisol for all the preceding times since
the initial time.

- The system matrix is much larger.

- The integrals are higher-dimensional. For a problem wisp&ce dimensions, the matrix elements in
a Galerkin method can require 6-dimensional integrals.

While the increase in memory requirements for the storag¢i@ecgolution for preceding times cannot
completely be avoided, there are situations where the difereasons for increased complexity are
in part neutralized by special features of the problem:

- The system matrix has a special structure related to thevalstructure (finite convolution in time)
of the integral equations. When low order basis functionsirre are used, the matrix is of block
triangular Toeplitz form, and for its inversion only one tho which has the size of the system matrix
for a corresponding time independent problem - needs tovseted.

- When a strong Huyghens principle is valid for the partidfiedtential equation, the integration in the
integral representation is not extended over the wholedbht®mundary of the space-time cylinder,
but only over its intersection with the surface of the badkdvight cone. This means firstly that
the integrals are of the same dimensionality as for timejreshdent problems, and secondly that the
dependence is not extended arbitrarily far into the pasipibly up to a time corresponding to the time
of traversal of the boundary with the fixed finite propagaspeed. These “retarded potential integral
equations” are of importance for the scalar wave equatidhriee space dimensions and to a certain
extent for equations derived from them, in electromagseditd elastodynamics. On the other hand,
such a Huyghens principle is not valid for the wave equatitwo space dimension, nor for the heat
equation nor for problems in elastodynamics nor in fluid dgits.

2. Laplace transform method®lve frequency-domain problems, possibly for complegdiencies.
For each fixed frequency, a standard boundary integral rddtiraan elliptic problem is applied, and
then the transformation back to the time domain employsiapmethods for the inversion of Fourier or
Laplace transforms. The choice of a numerical method foinherse Laplace transform can be guided
by the choice of an approximation of the exponential furcorresponding to a linear multistep
method for ordinary differential equations. This idea imted to theoperational quadrature method
(Lubich, 1994).

Laplace or Fourier transform is also used the other way rpungass from the time domain to the
frequency domain. This can be done using FFT in order to $amabusly solve problems for many
frequencies from one time-domain computation, or one chse sotime-domain problem with a time-
harmonic right hand side to get the solution for one fixeddmstry. It has been observed that this can
be efficient, too (Sayah, 1998), due to less strict requirgsfer the spatial resolution.

3. Time-stepping methodsart from a time discretization of the original initialdnadary value
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TIME-DEPENDENT BOUNDARY INTEGRAL EQUATION METHOD 3

problem via an implicit scheme and then use boundary inktegraations to solve the resulting elliptic
problems for each time step. Here a difficulty lies in the farhithe problem for one time step which
has non-zero initial data and thus is not in the ideal formafoapplication of the boundary integral
method, namely vanishing initial conditions and volumeé&s, and non-homogeneous boundary data.
The solution after a time step, which defines the initial ¢boi for the next time step, has no reason
to vanish inside the domain. Various methods have beeneatktasovercome this problem:

Using volume potentials to incorporate the non-zero ihitiata often is not desirable, since it
requires discretization of the domain and thus defies thargdge of the reduction to the boundary.
Instead of a volume potential (Newton potential), anotlatipular solution (or approximate particular
solution) of the stationary problem can be used. This padicsolution may be obtained by fast
solution methods, for example FFT or a fast Poisson solvea fintitious domain, or by meshless
discretization of the domain using special basis functitike thin-plate splines or other radial basis
functions (so-calledual reciprocity methogsee Aliabadi and Wrobel, 2002).

Another idea is to consider not a single time step, but aktsteps up to the final time together as a
discrete convolution equation for the sequence of solstairthe discrete time values. Such a discrete
convolution operator whose (time-independent) coeffisieme elliptic partial differential operators
has a fundamental solution which can then be used to conhgtrpare boundary integral method
for the solution of the time-discretized problem. A fundanta solution, which is also a discrete
convolution operator, can be given explicitly for simpled discretization schemes like the backward
Euler method (“Rothe method” Chapko and Kress, 1997). Fohalevclass of higher order onestep
or multistep methods, it can be constructed using Laplaoestorms via th@perational quadrature
method(Lubich and Schneider, 1992; Lubich, 1994).

These three approaches for the construction of boundaegriat methods cannot be separated
completely. There are many pointsaferlap

The space-time integral equation method leads, afteratigation, to a system that has the same
finite time convolution structure one also gets from timepgping schemes. The main difference is that
the former needs the knowledge of a space-time fundamesitdlen. But this is simply the inverse
Laplace transform of the fundamental solution of the cqroesling time-harmonic problem.

The Laplace transform appears in several roles. It can lebtodeanslate between the time domain
and the frequency domain on the level of the formulation efghoblem, but also on the level of the
solution.

The stability analysis for all known algorithms, for the spdime integral equation methods as for
the time-stepping methods, passes by the transformatitiretrequency domain and corresponding
estimates for the stability of boundary integral equatiorethods for elliptic problems. The difficult
part in this analysis is to find estimates uniform with respecthe frequency.

Forparabolicproblems, some analysis of integral equation methods aidrtbmerical realization
has been known for a long time, and the classical resultefmrsd kind integral equations on smooth
boundaries are summarized in the book by Pogorzelski (1986)he standard numerical methods
available for classical Fredholm integral equations of skeond kind, like collocation methods or
Nystréom methods, can be used in this case. More recentigtiamal methods have been studied in
a setting of anisotropic Sobolev spaces that allow the emeeof first kind integral equations and
non-smooth boundaries. It has been found that, unlike thebptic partial differential operator with
its time-independent energy and no regularizing propertiime direction, the first kind boundary
integral operators have a kind of anisotropic space-#itigticity (Costabel, 1990; Arnold and Noon,
1989; Brown, 1989; Brown and Shen, 1993).

This ellipticity leads to unconditionally stable and coryentGalerkin method¢Costabel, 1990;
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Arnold and Noon, 1989; Hsiao and Saranen, 1993; Hebeker aiaboH1993). Because of their
simplicity, collocation methodsre frequently used in practice for the discretization adcgptime
boundary integral equations. An analysis of collocatiorthods for second-kind boundary integral
equations for the heat equation was given by Costabal, 1987. Fourier analysis techniques for the
analysis of stability and convergence of collocation md#for parabolic boundary integral equations,
including first kind integral equations, have been studiedemecently by Hamina and Saranen (1994)
and by Costabel and Saranen (2000; 2001; 2003).

The operational quadrature method for parabolic probleasintroduced and analyzed by Lubich
and Schneider (1992).

For hyperbolicproblems, the mathematical analysis is mainly based oat@nial methods as well
(Bamberger and Ha Duong, 1986; Ha-Duong, 1990; Ha-Duor@ 1 There is now a lack of ellipticity
which on one hand leads to a loss of an order of regularityenetinor estimates. On the other hand,
most coercivity estimates are based on a passage to cometpiehcies, which may lead to stability
constants that grow exponentially in time. Instabilitidsaf are probably unrelated to this exponential
growth) have been observed, but their analysis does not sebmcomplete (Becache, 1991; Peirce
and Siebrits, 1996; Peirce and Siebrits, 1997; Birgissam., 1999). Analysis of variational methods
exists for the main domains of application of space-timerfulauy integral equations: First of all for
the scalar wave equation, where the boundary integralsieea gy retarded potentials, but also for
elastodynamics (Becache, 1993; Becache and Ha-Duong; C¥#linovich, 1993c; Chudinovich,
1993b; Chudinovich, 1993a), piezoelectricity (Khutorgiyand Sosa, 1995), and for electrodynamics
(Bachelot and Lange, 1995; Bache#tdtal, 2001; Rynne, 1999; Chudinovich, 1997). An extensive
review of results on variational methods for the retardeipiial integral equations is given by Ha-
Duong (2003).

As in the parabolic case, collocation methods are prattigalportant for the hyperbolic space-
time integral equations. For the retarded potential irgkegquation, the stability and convergence of
collocation methods has now been established (Davies, TH84des, 1998; Davies and Duncan, 1997;
Davies and Duncan, 2003).

Finally, let us mention that there have also been importanélbpments in the field dast methods
for space-time boundary integral equations (Michiels4®98; Jiacet al., 2002; Michielsseret al,,
2000; Greengard and Strain, 1990; Greengard and Lin, 2000).

2. SPACE-TIME INTEGRAL EQUATIONS

2.1. Notations

We will now study some of the above-mentioned ideas in closgail. LetQ) C R"™, (n > 2), be
a domain with compact boundafy The outer normal vector is denoted hyand the outer normal
derivative byo,,.

LetT > 0 be fixed. We denote b§) the space-time cylinder ov€randX. its lateral boundary:

Q=(0,T)xQ; D=0,T)xT; 9Q={0}xQUSU{T}x0).

For the description of the general principles, we consisdy the simplest model problem of each
type. We also assume that the right hand sides have the tigbtuge for the application of a “pure”
boundary integral method: The volume sources and the limitinditions vanish, so that the whole
system is driven by boundary sources.
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Elliptic problem (Helmholtz equation with frequencey € C):

(A+w)u=0 inQ
u = g (Dirichlet) ord,u=h (Neumann) o’ &)
radiation condition ato

Par abolic problem (heat equation):

(8t — A)’U, =0 in Q
u = g (Dirichlet) ord,u=h (Neumann) ort (P)
u=0 fort<0

Hyperbolic problem (wave equation with velocity > 0):

(c20} —A)u=0 inQ
u = g (Dirichlet) ord,u=h (Neumann) ort (H)
u=0 fort<0

2.2. Space-time representation formulas

2.2.1. Representation formulas and jump relatiorihe derivation of boundary integral equations
follows from a general method that is valid (under suitabi®ethness hypotheses on the data) in the
same way for all 3 types of problems. In fact, what counts @y &nd () is the property that the
lateral boundany is non-characteristic.

The first ingredient for a BEM is a fundamental soluti@h As an example, in 3 dimensions we
have, respectively:

eiw\w\
Gol@) = 4|z (€)
_ | uny e @20
G(t,x) { 0 (t <0) (P)
G(t,z) = pEp ot — %) (H)

Representation formulas for a solutiomf the homogeneous partial differential equation ang I’
are obtained from Green's formula, applied with respectht® ¢pace variables in the interior and
exterior domain. We assume thais smooth in the interior and the exterior up to the boundauy,
has a jump across the boundary. The jump of a funatiaoros is denoted by] :

u(z) = / {Oui Gl — 9)[u(w)] — Gz — 4)[Bwu(w)]} do(y) ©

u(t.) = [ [ (006t~ 5.2 = plus,)] - Gt = 5.0~ y)Osuy)]} doty) s (P)
oJI
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u(t, z) = //{3n<y>G(t — s,z —y)uls,y)] = Gt — s,z —y)[Ohu(y)l} do(y)ds  (H)
0JT

_ 1 |z — | On(y)| — Yl |z —y|
= [0 gttt = ) - R ot - )

L - =Y

- m -y)]do(y)
Thus the representation in the parabolic case uses integm@ter the past portion af in the form of
a finite convolution over the interv#0, ¢], whereas in the hyperbolic case, only the intersectionef th
interior of the backward light cone with is involved. In 3D, where Huyghens’ principle is valid for
the wave equation, the integration extends only over thadlary of the backward light cone, and the
last formula shows that the integration can be restricteld, tgiving a very simple representation by
“retarded potentials”.

We note that in the representation by retarded potentibtbose space-time points, y) contribute
to u(t, ») from where the pointt, z) is reached with speetby traveling through the spa@. In the
case of waves propagating in the exterior of an obstaclégthds to the seemingly paradoxical situation
that a perturbation &ts, y) can contribute tou(¢, x), although no signal frony has yet arrived i,
because in physical space it has to travel around the obstacl

All 3 representation formulas can be written in a unified waytroducing the single layer potential
S and the double layer potenti&d:

u = D([u]) = S([Onu]). 1)
In all cases, there hold the classical jump relations in ¢ienf
[Dv] = v [0, Dv] = 0
[Se] = 0 ; [OnSe] = —¢

It appears therefore natural to introduce the boundaryatpes from the sums and differences of the
one-sided traces on the exteridr() and interior {'~) of I':

Vv =S \F (single layer potential)

K = i({D|. +D|.) (double layer potential)

K' = 3(0.S|p; +0aS|.) (normalderivative of single layer potential)
w = -0,D \F (normal derivative of double layer potential)

2.2.2. Boundary integral equationdn a standard way, the jump relations together with these
definitions lead to boundary integral equations for the dbiet and Neumann problems. Typically
one has a choice of at least 4 equations for each problem: & fiequations come from taking the
traces in the representation formula (1yli(tct method), the third one comes from aingle layer
representation

u =S8  with unknowny

and the fourth one from double layer representation

uw=Dw with unknownw :
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For the exterior Dirichlet problemu( . = g given,d,u |, = ¢ unknown):

(D1) Ve = (-3 +HK)g
(D2) (3+K)e = -Wyg
(D3) Vi =y
(D4) (% +Kw = g
For the exterior Neumann problem\g, = g = v unknown0,,u |F = h given):
(N1) (3-Kjwv = -Vh
(N2) Wo = —(3+K)h
(N3) (3K = —h
(N4) Wuw = —h

Remember that this formal derivation is rigorously valia &l 3 types of problems. One notes
that second-kind and first-kind integral equations alternéely. For open surfaces, however, only the
first-kind integral equations exist. The reason is that anblany value problem on an open surface fixes
not only a one-sided trace but also the jump of the solutiad;taerefore the representation formula
coincides with a single layer potential representatioritierDirichlet problem and with a double layer
potential representation for the Neumann problem.

The same abstract form of space-time boundary integraltieqsa(D1)—-(D4) and (N1)—(N4) is
obtained for more general classes of second order iniiahtary value problems. If a space-time
fundamental solution is known, then Green’s formulas fer spatial part of the partial differential
operator are used to get the representation formulas and pefations. The role of the normal
derivative is played by the conormal derivative.

Since for time-independent boundaries the jumps acrodatiel boundary involve only jumps
across the spatial boundalyat a fixed timet, the jump relations and representation formulas for a
much wider class of higher order elliptic systems (Costabel Dauge, 1997) could be used to obtain
space-time boundary integral equations for parabolic ameitbolic initial-boundary value problems
associated to such partial differential operators. In #eegal case, this has yet to be studied.

2.2.3. Examples of fundamental solutioriBhe essential requirement for the construction of a
boundary integral equation method is the availability ofumdamental solution. This can be a

serious restriction on the use of the space-time integuaon method, because explicitly given and

sufficiently simple fundamental solutions are known forliss parabolic and hyperbolic equations
than for their elliptic counterparts.

In principle, one can pass from the frequency domain to thme tdlomain by a simple Laplace
transform, and therefore the fundamental solution for tineetdependent problem always has
a representation by a Laplace integral of the frequencyd@ent fundamental solution of the
corresponding elliptic problem. In practice, this repregation can be rather complicated. An example
where this higher level of complexity of the time-domainnegentation is visible, but possibly still
acceptable, is theissipative wave equatiomith a coefficientx > 0 (and speed = 1 for simplicity)

(02 + ady — AN)u =0

In the frequency domain, we obtain the same equation asdéavéive equation witly simply replaced
byw, = Vw? + iaw. The time-harmonic fundamental solution in three dimemsis therefore simply

" ( ): 1 ei\z\\/w2+iaw
* 4|z
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From this we obtain by inverse Laplace transformation

—at/2

G(t,x) = ZWW <5(t —|z|) + 2& Il(%\/tQ — |x]2) 0(t — |a:|)>

12 — |{E|2

with the Dirac distributior), the Heaviside functiof and the modified Bessel functiadh. We see
that there is no strong Huyghens principle, and the integrathe corresponding space-time integral
equations will be extended over the whole intersection@fbundary: with the solid backward light
cone{(s,y) |t —s> |z —y|}.

For the case oflastodynamigghe corresponding space-time integral equations havermptbeen
successfully used for a long time in practice (Mansur, 1988es, 1985; Antes, 1988), but they have
also been studied mathematically. Isotropic homogene@isrials are governed by the second-order
hyperbolic system for the-component vector field of the displacement

pafu —dive =0 with oij = M(aiu]‘ + 87’%) + )\51‘]‘ divu

Herep is the density, and andp are the Lamé constants. The role of the normal derivaljyés
played by the traction operat@i, whereT,u = o - n is the normal stress. The role of the Dirichlet
and Neumann boundary conditions are played by the dispkaceand traction boundary conditions,
respectively:

u =g (displacement) of,,u= h (traction) onX

In three dimensions, the space-time fundamental solutfmws the longitudinal (pressure) and
transversal (shear) waves that propagate with the two itielec

A+2
cp = At andc,; = K
p p

But there is no strict Huyghens principle, the support offthedamental solution is not contained
in the union of the two conical surfaces determined by thesespeeds but rather in the closure of the
domain between these two surfaces. The fundamental solsta(3 x 3) matrix G whose entries are
given by

TjTk || TjTk

Gjr(t,x) = 47Tp1|w|3 {t2 ( e ot — g) + (0K — e )o(t — |:_|)>

S

(5 -5 (- 51-0-2)

Hered;, is the Kronecker symbod, is the Dirac distribution, and is the Heaviside function.

Detailed descriptions of the space-time boundary integeguations in elastodynamics
corresponding to (D1)—(D4) and (N1)—(N4) above can be fanndany places (Chudinovich, 1993b;
Chudinovich, 1993a; Becache and Ha-Duong, 1994; Brebbé#d., 1984; Antes, 1988; Aliabadi and
Wrobel, 2002).

Whereas the frequency-domain fundamental solution isi@iplavailable for generalizations of
elastodynamics such as certain models of anisotropicigtastr thermoelasticity (Kupradzet al,,
1979) or viscoelasticity (Schanz, 2001b), the time-donfaimdamental solution quickly becomes
very complicated (for an example in two-dimensional pidecigicity see Wanget al. (2003), ), or
completely unavailable.
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TIME-DEPENDENT BOUNDARY INTEGRAL EQUATION METHOD 9

For the case oflectrodynamicsspace-time integral equations have been used and analyzed
extensively, too, in the past dozen years (Pujols, 1995cbl@, 1992; Terrasse, 1993; Bachelot and
Lange, 1995; Chudinovich, 1997). An analysis of numericathnds based on variational formulations
is available, and also the coupling of space-time integrab&ion methods with domain finite element
methods has been studied (Sayah, 1998; Bacbehdt, 2001).

Maxwell’s equations being a first order system, the abovem#dism with its distinction between
Dirichlet and Neumann conditions and between single andblddayer potentials makes less sense
here. There are, however, additional symmetries that albogive a very “natural” form to the space-
time boundary integral equations and their variationatfalations. The close relationship between the
Maxwell equations and the scalar wave equation in 3 dimassioplies the appearance of retarded
potentials here, too.

The system of Maxwell's equations in a homogeneous andoigitrmaterial with electric
permittivity e and magnetic permeabiliy is

wOH+curlE =0
e E—curlH=0

The speed of lightis = 1/,/21, and the corresponding retarded potential can be abbeehaet

ult — L=l
swin -4 [ Ut} M

4 [ — ]
Then an analogue of representation formula (1) can be wiittéhe following form:
. 1 1 g s
E(t,z) = —uS(0:[j])(t, =) + B grad, S(0; * divr[j])(t, z) — curl S([m])(t, )
1 .
H(t,2) = —=S(0um]) (¢, ) +  grad, S(0; * dive(m])(t,) + eurl S(]) ¢, 2)
where[j] and[m)] are the surface currents and surface charge densitiesigiviie jumps across:
j]=[HAn]; [m]=MnAE]
andg; ! is the primitive defined by
t
Gflw(t, x) = / o(s,z)ds
0
Taking tangential traces an, one then obtains systems of integral equations analogoUs)—
(N4) for the unknown surface current and charge densities. Dspdoial symmetries of the Maxwell
equations, the set of four boundary integral operdators, K', W appearing in the boundary reduction
of second-order problems is reduced to only two differeniiotary integral operators which we denote
by V andK, defined by
1
Ve =-nA S(Eatgo) + curly S(co; ')

1
Ky = 5(7+ +9 7 )nAcurl S(p)
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10 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

In the definition ofK, one takes the principal value which corresponds also tondemn value between
the exterior trace™ and the interior trace —, analogous to the definition of the double layer potential
operatorK in section 2.2.1.

For the exterior initial value problem, the traces

v:m:n/\Eandcp:,ucj:\/EH/\n
3

then satisfy the two relations corresponding to the fouegral equationéD1), (D2), (N1), (N2) of
thedirect method

(%—K)v:—ch and(%—K)go=Vv

From asingle layer representatigne. [m] = 0 in the representation formula for the electric field, one
obtains the time-dependegitctric field integral equatiowhich now can be written as

Vip=g
whereg is given by the tangential component of the incident field.

2.3. Space-time variational formulations and Galerkin noets

We will not treat the analysis of second-kind boundary irekgquations in detail here. Suffice it to
say that the key observation in the parabolic case is thetattfor smootH”, the operator norm in
L?(X) of the weakly singular operatdt tends to 0 a§” — 0. This implies tha% + K and% + K'are
isomorphisms in.? (and also inC™), first for smallT and then by iteration for all’. The operators
K and K’ being compact, one can use all the well-known numerical austtior classical Fredholm
integral equations of the second kind, including Galer&@ailocation, Nystrom methods (Pogorzelski,
1966; Kress, 1989), with the additional benefit that thegrakequations are always uniquely solvable.
If T has corners, these arguments break down, and quite difiexthods, including also variational
arguments, have to be used (Costabel, 1990; Dahlberg astidtar 1990; Brown, 1989; Brown and
Shen, 1993; Adolfssoet al., 1994).

2.3.1. Galerkin methodsFor the first kind integral equations, an analysis based aiati@nal
formulations is available. The corresponding numericathods are space-time Galerkin methods.
Their advantage is that they inherit directly the stabitifythe underlying variational method. In the
elliptic case, this allows the well-known standard bougdglement analysis of stability and errors,
very similar to the standard finite element methods. In thalpalic case, the situation is still similar,
but in the hyperbolic case, some price has to be paid for tpécapion of “elliptic” techniques. In
particular, one has then to work with two different norms.

Let X be some Hilbert space and lebe a bilinear form onX x X. If we assume that is bounded
onX:

AM :Vu,v € X : |a(u,v)| < M |lul||jv]

but thata is elliptic only with respect to a smaller norfn |
X is continuously embedded:

0, associated with a spacg, into which

Ja>0:Yue X : |a(u,u)| > a||ul|?
then for the variational problem: Finde X such that
a(u,v) =<f,o> VYweX
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and its Galerkin approximation: Findy € Xy such that
alun,vy) = <f,on> Yoy € Xy
there are stability and error estimates with a loss:
[unllo < Cllull  and[ju —unllo < C inf{[lu —on|| | v~ € Xn}

The finite dimensional spack y for the Galerkin approximation of space-time integral diunes
is usually constructed as a tensor product of a standarddasyrelement space for the spatial
discretization and of a space of one-dimensional finite elerar spline functions on the interval 7]
for the time discretization. Basis functions are then offtiren

wij(t,z) = xi(t)pi(z) (i=1,....1,j=1,...,J)
and the trial functions are of the form

1,7
N(tvx) = Z Oéijﬁpij(t,x)

i,j=1
The system of Galerkin equations for the unknown coeffisient is

1,J
Z alpij, ooy = <foom> (k=1,...,1,l=1,...,J)
i,j=1
In the following, we restrict the presentation to giegle layer potential operatdr’. We emphasize,
however, that a completely analogous theory is availabléh®hypersingular operatdy in all cases.
The variational methods for the first-kind integral operatare based on the first Green formula
which gives, together with the jump relations, a formulad/algain for all 3 types of equations: Hf
andy are given orl” or X, satisfy a finite number of conditions guaranteeing the ecgence of the
integrals on the right hand side of the formula (2) below, and

U:S% U:Swa

then

/ pVipdo = / {Vu-Vv+uAv}dz. (2)
r

Rn\I"
2.3.2. €) Forthe elliptic case, we obtair(, ->r denotes.? duality onI’);

<, Vigsr = / (1Vul? = w?[ul?) dz.
R7\T

This gives the following theorem that serves as a model ®other two types. | holds not only for
the simple case of the Laplacian, but also, in particulaastsertion (ii), for more general second order
systems, including the Lamé system of linear elasticitygt@bel, 1988).

Theorem 2.1. LetT be a bounded Lipschitz surface, open or cloggd/?(I") and H—/2(T") denote
the usual Sobolev spaces, aHd */2(I") for an open surface is the dual &f/2(T"). Then
()Forw=0,n>3 V:HY2T) — HY2(T)is an isomorphism, and there is an> 0 such
that

<y, VSD>F > O‘H@Hi}—l/z(p) .
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12 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

(i) For any w andn, there is am > 0 and a compact quadratic forton f]*l/2(1“) such that

Re <, Vig>r > allpld yyary — k().

(iii) If w is not an interior or exterior eigenfrequency, the&nis an isomorphism, and every Galerkin
method inF —'/2(T") for the equatiori’¢) = g is stable and convergent.

2.3.3. (P) For the parabolic case of the heat equation, integration oirethe Green formula (2)
gives

T
<p,Ve>y = // {IVau(t,z)|* + O} dx dt
0 n\F

1
//|Vru(t,a:)|2dxdt+§/ (T, )| da

From this, the positivity of the quadratic form associatéthwhe operatoil” is evident. What is less
evidentis the nature of the energy norm¥6rhowever. It turns out (Arnold and Noon, 1989; Costabel,
1990) that one has to consider anisotropic Sobolev spadhs &bllowing form

Hy*(3) = L*(0,T5 H' (1)) 0 H(0,T; LA(T)).

The index0 indicates that zero initial conditions &t= 0 are incorporated. The optionaheans zero
boundary values on the boundary of the (open) manifol®ne has the following theorem which is
actually simpler than its elliptic counterpart, becausedperators are always invertible, due to their
\olterra nature.

Theorem 2.2. LetI" be a bounded Lipschitz surface, open or closed, 2.
~_1 _1 11
() V:H,? *(X)— HZ*(X)is anisomorphism, and there is an> 0 such that

<p, Ve>s > allpl?y s

(ii) Every Galerkin method irﬁg%" %(E) for the equatiori/y) = g converges. The Galerkin matrices
have positive definite symmetric part. Typical error estisare of the form

1 1
lo = onill_y -1 <O+ +RCTD2) g5,

if ¢n.1 is the Galerkin solution in a tensor product space of spliaemesh-sizé in time and finite
elements of mesh-sizdn space.

2.3.4. ({) Forthe wave equation, choosing= v in the Green formula (2) does not give a positive
definite expression. Instead, one can chapse 0,¢. This corresponds to the usual procedure for
getting energy estimates in the weak formulation of the weyeation itself where one usésu: as a
test function, and it gives

T
<Opp, Vp>y5 = / / {0V, - Vou + 0udfu} du dt
0 'n\F

1

:5/ (IVoul(T, 2) + [0eu(T, )} d.
n\T
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Once again, as in the elliptic case, this shows the closéarlaf the operatoi” with the total energy

of the system. In order to obtain a nord {(Q)) on the right hand side, one can integrate a second
time overt. Butin any case, here the bilinear ford; p, V o> will not be bounded in the same norm
where its real part is positive. So there will be a loss of tagty, and any error estimate has to use two
different norms. No “natural” energy space for the oper&tqresents itself.

2.4. Fourier-Laplace analysis and Galerkin methods

A closer view of what is going on can be obtained using spame-Fourier transformation. For this,
one has to assume thats flat, i. e. a subset &”~!. Then all the operators are convolutions and as
such are represented by multiplication operators in Fospace. Ifl" is not flat but smooth, then the
results for the flat case describe the principal part of treatprs. To construct a complete analysis, one
has to consider lower order terms coming from coordinatesfamations and localizations. Whereas
this is a well-known technique in the elliptic and parabal&ses, namely part of the calculus of
pseudodifferential operators, it has so far preventeddahstcuction of a completely satisfactory theory
for the hyperbolic case.

We denote the dual variables(tg x) by (w, &), andz’ and¢’ are the variables related FoC R™ 1.
It is then easily seen that the form of the single layer padéist

VH(E) = (€ — ) H(E) ©
Vh(,8) = 5 (€1 — i) H(0,) @
V(€)= 5 (7 - ) H(w,€) )

Note that £) and () differ only in the role ofw: For (£) itis a fixed parameter, fofH) it is one of the
variables, and this is crucial in the application of Parg¥armula for <y, Vo>.

2.4.1. €) For the elliptic case, the preceding formula implies Theo21: If v = 0, then the
function|¢’| ! is positive and for largé’| equivalent to(1 + |¢’|2)~1/2, the Fourier weight defining
the Sobolev spact ~/2(I'). If w # 0, then the principal part (ag’| — oc) is still |¢’| =1, so only
a compact perturbation is added. There is an additionakreéisen by Ha-Duong (1990): i is real,
then%(|§’|2 — w2)*% is either positive or imaginary, so its real part is positxeept on the bounded
set|¢’| < |w|. This implies

Proposition 2.3. Letw? > 0, T flat, supp ¢ compact. Then there is anw) > 0 such that
Re <p,Vp>p > a(w) ”90”?:[—1/2 .

The work of transforming this estimate into error estimdteghe BEM in the hyperbolic case is
still incomplete. See Ha-Duong (2003) for a review of theestd the art on this question.

2.4.2. (P) Forthe parabolic case, the symbol of the single layer piaient
1 .1
ov(w,&) = 5 (€' —iw) 3
has again positive real part. In addition, it is sectorial:

|arg oy (@, )] < 7.
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14 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

This has the consequence that its real part and absolute asdlequivalent (an “elliptic” situation):
_1 _1
C1 1€ —iw| 2 <Reoy(w,&) < Ca ||€']? —iw| 2 .

In addition, for large|¢’|? + |w], this is equivalent to((1 + [¢|?) + |w|)71/2, the Fourier weight
defining the spaceéf —z'~3(X). This explains Theorem 2.2. It also shows clearly the diffiee
between the single layer heat potential operator on thedsyrand the heat operatdr — A itself:
The symbol of the latter i&|? — iw, and the real pait|? and the absolute valug¢|* + |w|?)/? of
this function are not equivalent uniformly gnandw.

2.4.3. () Inthe hyperbolic case, the symha} does not have positive real part. Instead, one has to
multiply it by i@ and to use a complex frequeney= wg + iw; with w; > 0 fixed. Then one gets

Re (@(¢']2 ~w?)}) = S + W)
and similar estimates given first by Bamberger and Ha DuoBg)L Note that with respect fo|,
one is losing an order of growth here. For fixegd the left hand side is bounded hy|?, whereas the
right hand side i®)(|w|). One introduces another class of anisotropic Sobolev spzfdbe form

H"RxT)={u|u,d0fuec H R xT)}
with the norm

[lls e = / /]R‘l W (1€ + |wl?)*|i(w, £")[* d€’ duw .

Imw=wry

We give one example of a theorem obtained in this way.

Theorem 2.4. LetI" be bounded and smooth,s € R. Then

() V:HyT'(2)— HPV(Z)andV -l HsLrH(R) - HYT(D)
are continuous.

(i) Let w; > 0 and the bilinear formu(yp, 1) be defined by

a(p, ) :/ efgw’t/(Vgo)(t,x) W(t,x) do(z)dt.
0 T
Then there is amv > 0 such that
Rea(p,¢) > awrllel” 1 o, -

2

(iii) The Galerkin matrices for the scheméind o5 € Xy such that

a’(SDNaw) = <g,5,52/1>z VQ/J E‘XPN
have positive definite hermitian part, and there is an eristiraate

1
lo—enll-y00 < Cwp? inf e —vl g0,

Thus one has unconditional stability and convergencefor 0. In practical computations, one will
use the bilinear forna (¢, 1) for w; = 0 where the error estimate is no longer valid. Instabilitiagé
been observed that are, however, probably unrelated tawissmn of the exponential factor. They are
also not caused by a too large CFL number (ratio between tiepeasd spatial mesh width). In fact,
too small and too large time steps have both been reporteatbtd instabilities.

Corresponding results for elastodynamics and for elegtrathics can be found in the literature
(besides the above-mentioned works, see the referenaasigiChudinovich (2001) and in Bachelot
etal.(2001),).
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2.5. Collocation methods

In order to avoid the high-dimensional integrations neagssor the computation of the matrix
elements in a Galerkin method such as the ones describedeordins 2.2 and 2.4, one often uses
collocation methods. Just like in the elliptic case, evartlie classical first kind integral operators for
the Laplace operator, the mathematical analysis lagsusdyibehind the practical experiences.

In more than two dimensions, only for very special geomethiat are amenable to Fourier analysis,
stability of collocation schemes can be shown. For timeedepnt integral equations, even two
space dimensions create problems that only recently hame ddeercome, and this only for special
geometries, mainly flat boundaries or toroidal boundaries.

Collocation schemes for the single layer potential integgaation (D3) are easy to formulate. One
usually takes basis functions of tensor product form, i. e.

@ij(t, ) = xi(t)Y; ()

wherey;(i = 1,..., M) is a basis of a space of finite elements (splines) of degrea the interval
[0,T], andy;(j = 1,...,N) is a basis of a space of finite elements of degteen the boundary'.
Then the trial functions are of the form
M,N
upn(t, @) = Y aijpi(t )
i,j=1

Here the indiceéh indicate the time step ~ T'/M and the mesh width of the discretization of the
boundany".
The linear system for the unknown coefficients is obtainethfthe equations

Vaugn(ti, z;) = g(ti, ;)
wheret; € [0,T](i = 1,..., M) are the time collocation pointsand € I'(j = 1,...,N) are the
space collocation points. The collocation points are ugwdlosen in the “natural” way, meaning
midpoints for even degree splines in time, nodes for odd ekegplines in time, barycenters for
piecewise constants, = 0, nodes of the finite element mesh Brfor d, = 1, and more generally
nodes of suitable quadrature rules for other values,of

2.5.1. (P) Forthe heatequationinasmooth domainin 2 space dimen#iovess shown in Costabel
and Saranen (2000, 2003) that thr= 0, 1 one gets convergence in anisotropic Sobolev spaces of the
“parabolic” class defined in subsection 2.3.3. There is aitimm for optimality of the convergence
which corresponds to a kind of anisotropic quasi-unifoymit

k~h?
2.5.2. () For the retarded potential integral equation, that is, theadon of the single layer

potential for the wave equation in 3 space dimensions, Baned Duncan (2003) prove rather complete
stability and convergence results for the case of a flat baynd

3. LAPLACE TRANSFORM METHODS
To pass from the time domain to the frequency domain, we d#fimé~ourier-) Laplace transform by

U(w) = Lu(w) = /000 e“tu(t)dt 3
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If u is integrable with a polynomial weight or, more generallyteapered distribution, and if, as
we assume here throughoutit) = 0 for ¢ < 0, thenw is holomorphic in the upper half-plane
{w=wpr+ iws | wg € R,wy > 0}. The inversion formula is

u(t) = £ Yu(t) = = / T it ) d @)

27T —oo+iwr

Frequently, it is customary to define the Laplace integral by

/ e Stu(t) dt
0

which is the same as (3) wherandw are related by = —iw. The upper half-plang; > 0 coincides
with the right half-plan&e s > 0.

The functiont — wu(t) can take values in some Banach space (Arendt, 2001), for example in a
space of functions depending anin which case we write

U(w,z) = Lu(w,x) = / e“tu(t,x)dt
0

By Laplace transformation, both the parabolic and the hyplér initial-boundary value problems
are transformed into elliptic boundary value problems witheigenvalue paramet&rdepending on
the frequencw. Thus both the heat equatiéd, — A)u = 0 and the wave equatiqa=292 — A)u = 0
are transformed into the Helmholtz equati@a — \)u(w, z) = 0, where

A(w) = —iw for the heat equation, and
2
AMw) = —i—g for the wave equation

The idea of the Laplace transform boundary integral eqoati@thod is to solve these elliptic
boundary value problems for a finite number of frequencigk wistandard boundary element method
and then to insert the results into a numerical approximaifdhe Laplace inversion integral (4).

There exist various algorithms for numerical inverse Lapl&ransforms, see for example Davies
and Martin (1979) or Abate and Whitt (1995). One will, in geadefirst replace the line of integration
{Imw = wy} by a suitable equivalent contodrand then choose some quadrature rule approximation
of the integral. The end result will be of the form

1

T o

L
/C e W (W) dw ~ Z wee” e U(wy) (5)

=1

u(t)

with quadrature weights, and a finite number of frequencies.

One obvious candidate for such a quadrature formula is #yenoidal rule on a large interval
[—R, R] where the line{Imw = w;} is replaced by—R, R] + iw;. This can then be evaluated by
Fast Fourier Transform which is clear when we write the Leglaversion integral as inverse Fourier
transform over the real line:

u(t) = L71at) = et FLL L [a(wr + iwr)]

wpr—t

Let us describe the resulting procedure in more detail ®fdhmulation with a single layer potential
representation for the initial-Dirichlet problem, keegpim mind that any other type of boundary
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integral equation constructed in Section 2.2.2 would do e and lead to a similar formalism. By
Laplace transform we get the boundary value problem

(A = Aw))u(w,z) =0in Q
t(w,z) = g(w,z) onT

where the right hand side is the Laplace transform of thergh@undary datg. For the unknown
densityy) we get the first kind integral equation ®h

VA(w)i(w) =g(w) (6)
whereV),,, is the weakly singular integral operator generated by clutiom with the kernel (in three

dimensions)
B eV AWz

G)\(w)(x) - 47T|{,U|

Now let V)., be some finite dimensional boundary element approximafian Q,), so that

Yn(w) = V)?i),hg(w)
is the corresponding approximate solution of equationl(®erting this into the numerical inversion
formula (5) finally gives the following expression for thepapximation of the unknown density(¢, x)
via the Laplace transform boundary element method

L
Unltr) = > wee™ = (Vid () ) () )
=1

Note that on this level of abstraction, formula (@pks the saméor the parabolic case of the heat
equation, the hyperbolic case of the wave equation, or dwenlissipative wave equation. The only
difference is the function(w) which then determines, depending on the confbamd its discretization
we, for which complex frequencieg’ —\(w¢) the single layer potential operator has to be numerically
inverted.

For the practical computations, this difference can berg®deln a precise quadrature rule in (5)
which is needed for high resolution in time, there will be gam with large absolute values. In the
hyperboliccase (but not in thparaboliccase!), this means large negative real parts\far,), hence
highly oscillating kernels, and some machinery for higbgitency boundary element methods has to
be put in place (see, for example, Bruno (2003)).

Applications of the Laplace transform boundary integrala@n methods in elastodynamics have
a long history (Cruse and Rizzo, 1968; Cruse, 1968). For rgéimations such as viscoelasticity,
poroelasticity or piezoelectricity, these methods are enmractical than the space-time boundary
integral equation methods, because space-time fundahsehitions are not explicitly known or very
complicated (Gaul and Schanz, 1999; Schanz, 1999; Sch@f1a2 Wanget al, 2003). Recently,
Laplace domain methods related to the operational quadratathod (see subsection 4.4) have been
used successfully in practice (Schanz and Antes, 1997kar&cand Antes, 1997a; Schanz, 2001b;
Telles and Vera-Tudela, 2003).

A final remark on the Laplace transform boundary element otetmstead of, as described in this
section, performing first the Laplace transform and thenréakeiction to the boundary, one can also
first construct the space-time boundary integral equatisrdescribed in the previous section and then
apply the Laplace transform. It is easy to see that the iiaguitequency-domain boundary integral
equations are exactly the same in both procedures.
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4. TIME-STEPPING METHODS

In the previous sections, the boundary reduction step weferpeged before any discretization had
taken place. In particular, the description of the trardbemavior of the solution by a finite number of
degrees of freedom was introduced, via a Galerkin or cdilocanethod for the space-time integral
equation or via numerical Laplace inversion, only after domstruction of the boundary integral
equation.

It is possible to invert the order of these steps by first appgla time discretization scheme to the
original initial-boundary value problem and then using aitaary integral equation method on the
resulting problem that is discrete in time and continuowspiace. One advantage of this idea is similar
to the motivation of the Laplace transform method: The palialand hyperbolic problems are reduced
to elliptic problems for which boundary element techniqaeswell known. Another attraction is the
idea that once a procedure for one time-step is construateican march arbitrarily far in time by
simply repeating this same procedure.

In this section we will, for simplicity, only treat the pamlix case of the initial-Dirichlet problem
for the heat equation. Quite analogous procedures arelposaliso for the hyperbolic case, and
in particular theoperational quadrature metholdas been analyzed for both the parabolic and the
hyperbolic situation, see Lubich (1994). In the literatareapplied boundary element methods, one
can find many successful applications of similar time-siggpgchemes to parabolic and hyperbolic
problems of heat transfer, fluid dynamics, elastodynammgs\arious generalizations (Nardini and
Brebbia, 1983; Partridget al, 1992; Gaukt al,, 2003).

4.1. Time discretization

We consider the initial-boundary value problem
(0 — A)u(t,z) =0 InQ
u=g onxy (8)
u(t,z) =0 fort<0
as an ordinary differential equation in time with operatoefficients. Consequently, we can employ
any kind of one-step or multistep method known from the nucaéanalysis of ordinary differential
equations. Onlymplicit schemes are of interest here, for two reasons: The firstmaagbe stability
of the resulting scheme and secondly, explicit schemesdwood really require a boundary integral
equation method.
The solutionu(t, ) for 0 < ¢ < T'is approximated by a sequenc®(x), n =0,..., N, where
u™ is understood as an approximationdgt,,, -), t, = nk = nT/N
The simplest discretization of the derivatiewith timestepk is the backward difference, which gives
thebackward Euleischeme for (8)

n_ ,n—1
4 k“ —Au"=0 inQ (n=1,...,N)
u(xz) =g"(x) = g(tn,z) onl' (n=1,...,N) 9)
u’=0 fort<o0
The actual elliptic boundary value problem that one has teesat each time stepy = 1,..., N is
therefore
u — kAU =4 inQ; w*=g" onT (20)
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Higher order approximation in time can be achieved by mefisnethods of the form

Zaju"*j — kZﬂjAu”*j =0inQ; u'=g" onl (11)
j=0 =0
The coefficientsy; and/3; define the characteristic function of the multistep scheme
Y gl
8(0) = S
ijo B¢
Consistency of the scheme (11) is characterized(ty = 0, §'(1) = —1, and the scheme is accurate

of orderpif (e *)/z =1+ O(zP) asz — 0. One can assume thag S, > 0.

4.2. One step atatime
The problem to solve for one time step in both (10) and (11 th@form
"u—Au=finQ; u=g onl (12)

Heren? = 1/k for (10) andn?® = «ao/(k3o) for (11). The right hand sid¢ is computed from the
solution of the previous time step(s), and it has no reasaamish except possibly for the very first
time step. For the integral equation method, we therefove kaapply a representation formula that
takes into account this inhomogeneous differential equati

Letwu, = Pf be a particular solution of the equatighu, — Au, = fin Q. Thenuy = u — u,
satisfies the homogeneous equation and can therefore beutsdrpy a standard boundary integral
equation method, for example by one of the methods from &e2t2. For an exterior domain, we thus
have the representation formulasin

w(@) = [ (B Gl = )uo(w) = Gla =)o)} dor ()
= D(vouo)(x) = S(y1uo0)(x)
HereG is the fundamental solution of the Helmholtz equation giwvethe three-dimensional case by
—nlz|
G(z) = ZWW
Using our abbreviations for the single and double layer mitdés and
You=ul, s yiu=0pul;

we have the representation for

u="D(yu) = S(nu) + Pf —=D(wPf) + S(nPf) (13)

For the unknownp = ~,u in the direct method for the Dirichlet problem or for the uokkm ) in a
single layer potential representation
u=8¢Y+ Pf (14)

or the unknownw in a double layer representation
u=Dw+ Pf (15)
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this leads to the choice of integral equations

(D1) Vi = (—3+K)g+ (53— K)wPf+VnPf
(D2) (3+K)p = —Wg+WrPf+(—3+K)mPf
(D3) Vi = g—2Pf

(D4) G+Kw = g—"Pf

These are standard boundary integral equations that caedretized and numerically solved in many
ways. The one peculiarity is the appearance of the partisolationP f in the representation formula
(13) and in the integral equatio(®1)—(D4).

There are various possibilities for the construction of &aproximation of)P f. Let us mention
some of them that are being used in the boundary elemeratliterand practice:

4.2.1. Newton potential In the standard representation formula for the inhomogesételmholtz
equation derived from Green’s formulB,f appears in the form

Pf(x) = /Q Gz —y) f(y) dy

This representation has the advantage that the last twe terthe representation formula (13) cancel,
and therefore also the integral equatiohd ) and(D2) simplify in that the integral operators acting on
the traces o f are absent. For computing the Newton potential, the dofdias to be discretized,
thus neutralizing one of the advantages of the boundaryesiemmethod, namely the reduction of
the dimension. Note, however, that this domain discrétimais done only for purposes of numerical
integration. No finite element grid has to be constructeds lalso to be noted that the domain
discretization only enters into the computation of the tigand side; the size of the linear system
to be solved is not affected.

4.2.2. Fourier series Another method to get an approximate particular solufighis to embed the
domain{? into a rectangular domaif?, then approximate an extension pfto 2 by trigonometric
polynomials using Fast Fourier Transform, solve the Helizheguation in Fourier space, and go back
by FFT again. Other fast Helmholtz solvers that exist fod@omains can be used in the same way.

4.2.3. Radial basis functionsin the previous subsections, the right hand sfdeas approximated
by a linear combination of special functions for which pautar solutions of the Helmholtz equation
are known: the Dirac distribution for the Newton potentiadthrod, and exponential functions for the
FFT method. The particular solutid?f is then given by the corresponding linear combination of the
individual particular solutions. Other special functidhat can serve in the same way are radial basis
functions, in the simplest case functions of the f¢gms « ;|, where ther; belong to some discretization
of Q by an unstructured grid. One advantage of the radial basidtifin technique is that there exist
many practical and theoretical results about interpatabip such functions (Powell, 1992; Faul and
Powell, 1999).

4.2.4. Higher fundamental solutiondn the first time step, the solutian= u! is given, after solving
the appropriate boundary integral equations, by the reptation formula (13) withf = 0, i.e. by a
combination of single and double layer potentials. THiss then used as right hand sidién the next
time step. A particular solutio®f can then be found, without any domain integral, by replatiey
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fundamental solutio” of (n> — A) in the representation formula by a fundamental soluGéh of
(n* — A)? satisfying
(o = A)GV(2) = G(x)

Thus if
f(a) = / (B Gl — yuly) — Gz — 1)o} do(y)

then a particular solutiof? f is given by

Pf(x) = / {Ony GV (& — y)uly) — GV (z — y)¢} do(y)

In the next time step, the right hand side is then construicted single and double layer potentials
plus thisP f. Repeating the argument, one obtains a particular solbgiarsing a fundamental solution
G® of (n? — A)?. In then-th time step, one then needs to use higher order fundansattionsG(?),

(7 < n) which satisfy the recurrence relations

(1 = A)GUH (2) = G (x)

Such functiong7(!) can be given explicitly in terms of Bessel functions. In thisy, the whole time
marching scheme can be performed purely on the boundatypuiitusing domain integrals or any
other algorithm requiring discretization of the dom&in Two other points of view that can lead,
eventually, to an entirely equivalent algorithm for the ¢igiscretized problem, are described in the
following sections.

4.3. Alltime steps at once

Just as in the construction of the space-time integral &pmthe heat equation or wave equation
was not considered as an evolution equations, i.e. an oydtiferential equation with operator
coefficients, but as a translation invariant operatof®dr™ whose fundamental solution was used
for integral representations, one can consider the tiraerelized problem as a translation invariant
problem orZ x R™ and construct a space-time fundamental solution for this-skscretized problem.
The role of the time derivative is then played by its one-stepulti-step discretization as in (10) or
(11), and the role of the inverse of the time derivative andtbér finite time convolutions appearing
in the space-time integral operators is played by finiterdiscconvolutions.

In simple cases, such discrete convolution operators caimveeted explicitly. For a two-part
recurrence relation such as the backward Euler methoch@g.dnvolution operator can be represented

by a triangular Toeplitz matrix with just one lower side ciagl. LetU denote the vectar!, ..., u™Y
and defingz correspondingly. Then the backward Euler scheme (10) cavritten as a system
AU =0inQ; U=GonT (16)

Here A is an elliptic system of second order, given by the matrixngats
aj i = 1-— kA, ajj—1 = —1; all otherai,j =0

Once a fundamental solution of this system is found, theesysdf equations (16) can be solved
numerically by standard elliptic boundary element methdise to the simple form o4, such a
fundamental solution can be written using the higher funelatal solutionsG) of the Helmholtz
equation defined in section 4.2.4. Itis a lower triangulagglidz matrix® with entries(g; ;), where

gij(x) =G(x); gijx) =G Dforj<i; gj(x)=0forj<i
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All boundary integral operators constructed from this famental solution will have the same lower
triangular Toeplitz (finite convolution) structure, aneithsolutions can be found by inverting the single
operator that generates the diagonal and by subsequensblastitution.

For a detailed description of the approximation of the tvilm&hsional initial-Dirichlet problem for
the heat equation using such a method, including formulath&®kernels in® and a complete error
analysis of the resulting second kind integral equation els & numerical results, see Chapko and
Kress (1997).

4.4. The operational quadrature method

In the previous section, the simple structure of the bacéwaller scheme was essential. The resulting
numerical approximation is of only first order in time. If omants to use schemes that are of higher
order in time, one can employ multistep methods as descrbede. The resulting schemes still
have the lower triangular Toeplitz structure of finite degerconvolutions in time. From the algebraic
structure of these convolutions it is clear that also funeliatal solutions, resulting boundary integral
operators, and their solution operators all have this fogtevolution structure.

Explicit constructions of kernels, however, will not be pite, in general. Just as for the original
continuous-time problem the appropriate functional tfams, the Laplace transform, allowed the
reduction of the parabolic to elliptic problems, here foe ttiscrete-time problem one can use the
appropriate functional transform, namely thdransform. In order to conserve the approximation
order of the multistep method, one has to use a certain gmslbetween continuous convolutions
and discrete convolutions or equivalently, between Lapteegnsforms and-transforms.

For the generators of the convolution algebras, namely ¢niwatived; in the continuous case and
its timestepk discretizatiord?, this translation is given by the definition (11) of the mst#ip method,
characterized by the rational functiéf). For the whole convolution algebras, this translation $ead
to the discretization method described by Lubiobfserational quadraturenethod, see Lubich and
Schneider (1992); Lubich (1994). The general translatida is the following (we use our notation for
the (Fourier-)Laplace transform introduced above, notithib notation):

Denote a finite convolution operator with operator-valuesefficients by

K (id)u(t) = L1 (K (w)a(w))

If IA((w) decays sufficiently rapidly in the upper half plane, thisraper is given by an integrable kernel
K whose Laplace transform 55 (w):

z@t / K(s)u(t—s)ds
The corresponding discrete convolution operator is giwen b
(IA( 28’“ "_ZK Un—j
where the coefficient&; are defined by theit-transform
- =6
Y KA = K(z'%)
j=0
Herek is the time step, andl(z) is the characteristic function of the multistep method.
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The inverse of the-transform is given by the Cauchy integral over some cirele= p

1

_ = .0(2) —j—1
i = 5 K(i )z dz

lzl=p
It is not hard to see that this translation rule reduces Heicase of the derivativ = f{(iat) with
K (w) = —iw, to the convolution defined by the characteristic functi¢s):

n o0
3f Uy = 25j Un—j Withd(z) = Z J; 2
=0 =0

In addition, this translation rule is an algebra homomasphi.e. it respects compositions of (operator-
valued) convolution operators. This is easy to see, because

K1(i0,) K2 (i0y) = (K1K»)(i9,) and alsak; (i0F) K2 (i0F) = (K1 K>)(i0F)

By the relationz = ¢*“*, one can see the analogy between the Cauchy integral gverconst with
measure:—/~! dz and the Laplace inversion integral for the time ¢; = jk overlmw = const with
measure i dw.

This operational quadrature method can be applied at delifesent stages of an integral equation
method for the time-discretized initial value problem:

It can be used to find a fundamental solution for the wholeesysh the form of a Cauchy integral
over the frequency domain fundamental solutighs. We get for the coefficients; of the semi-
discrete space-time fundamental solut®@o)) the formula

1 . . 6(z
gj(x) = i " Guz)(z) 277 T dz with w(z) = z%
This integral over holomorphic functions can be evaluatatherically with high speed and high
accuracy using the trapezoidal rule and FFT. In simple ¢dsean be evaluated analytically, for
example in the case of the backward Euler method, where wethawsimple characteristic function

0(z)=1-2

The Cauchy integral then gives the higher order fundamentationsG ) of the previous section.

This fundamental solutio® (i9F) can then be used in a standard boundary element methodngeepi
in mind that the time-discretized solution will be obtairt®dfinite convolution.

The operational quadrature scheme can also (and equiyalest introduced at a later stage in
the integral equation method, after the frequency domdaginal equations have been solved. Let us
describe this at the example of the single layer representatethod for the initial-Dirichlet problem
of the heat equation. R R

The space-time single layer heat potential operatdt oan be written a¥ = V (i9;) , whereV (w)
is the frequency-domain single layer potential operator evhose kernel is the fundamental solution
of the Helmholtz operataf—iw — A). Invertingl” amounts to evaluating the Cauchy integral of the
inversez-transform where the frequency-domain single layer irdkggquations have been solved for
those frequencies needed for the Cauchy integral. For theaimation:,, of the solutiomy(¢,,) at
the timet,, = nk with time stepk and a space discretizatidf (w) of V(w) one obtains then

O(z), _ = i
n = 5= ‘/}L(Z%) ! Zgn_jz I dz (17)
=0
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This can be compared to the Laplace inversion integral (8reskhe contou€ is the image of the
circle |z| = p under the mapping — w = z@ When the Cauchy integral in (17) is evaluated
numerically by a quadrature formula, we obtain an end rékatthas a form very similar to what we
got from the Laplace transform boundary element methodrimfiga (7).

In the papers Lubich and Schneider (1992); Lubich (1994, dherational quadrature method
has been analyzed for a large class of parabolic and hyperinitial-boundary value problems
and multistep methods satisfying various stability caondi. Recent computational results show its
efficiency in practice (Schanz and Antes, 1997b; Schanz amesA1997a).

REFERENCES

Abate J and Whitt W. Numerical inversion of Laplace transferof probability distributionsORSA
Journal on Computindg995;7: 36—43.

Adolfsson V, Jawerth B and Torres R. A boundary integral métfor parabolic equations in non-
smooth domaingComm. Pure Appl. MatH.994;47(6): 861—892.

Aliabadi MH and Wrobel LCThe Boundary Element Methagbhn Wiley & Sons. New York. 2002.

Antes H. A boundary element procedure for transient wavpggations in two-dimensional isotropic
elastic media.Finite Elem. Anal. Desl1985;1: 313-322.

Antes H Anwendungen der Methode der Randelemente in der Elastodiriieubner. Stuttgart. 1988.

Arendt W, Batty C, Hieber M and Neubrander Wector-Valued Laplace Transforms and Cauchy
Problems Birkhauser Verlag. Basel. 2001.

Arnold DN and Noon PJ. Coercivity of the single layer heagmtial.J. Comput. Math1989;7: 100—
104.

Bachelot A, Bounhoure L and Pujols A. Couplage élémentsfpotentiels retardés pour la diffraction
électromagnétique par un obstacle hétérogioener. Math2001;89(2): 257-306.

Bachelot A and Lange V. Time dependent integral method foxwdl's system Mathematical and
numerical aspects of wave propagation (Mandelieu-La N&dl995) SIAM. Philadelphia, PA.
1995. pp. 151-159.

Bamberger A and Ha Duong T. Formulation variationnelle esgamps pour le calcul par potentiel
retardé d’'une onde acoustiqgidath. Meth. Appl. Scil986;8: 405-435 and 598-608.

Becache E. Résolution par une méthode d’'équationgralkés d’un probléme de diffraction d’ondes
élastiques transitoires par une fissurgse de doctoratUniversité Paris VI. 1991.

Becache E. A variational boundary integral equation metloocan elastodynamic antiplane crack.
Internat. J. Numer. Methods Engr$y993;36(6): 969—984.

Becache E and Ha-Duong T. A space-time variational formangor the boundary integral equation
in a2D elastic crack problenRAIRO Mo@l. Math. Anal. Nurér. 1994;28(2): 141-176.

Birgisson B, Siebrits E and Peirce AP. Elastodynamic dibecindary element methods with enhanced
numerical stability propertiegnternat. J. Numer. Methods Engr$999;46(6): 871-888.

Brebbia CA, Telles JCF and Wrobel LBoundary Element Techniqu&pringer-Verlag. Berlin. 1984.

Encyclopedia of Computational Mechani&dited by Erwin Stein, René de Borst and Thomas J.R. Hughes
(© 2004 John Wiley & Sons, Ltd.



TIME-DEPENDENT BOUNDARY INTEGRAL EQUATION METHOD 25

Brown RM. The method of layer potentials for the heat equmatid_ipschitz cylindersAmer. J. Math.
1989;111: 339-379.

Brown RM and Shen ZW. A note on boundary value problems forhbat equation in Lipschitz
cylinders.Proc. Amer. Math. S0d.993;119(2): 585-594.

Bruno O. Fast, high-order, high-frequency integral methddr computational acoustics and
electromagneticén M. Ainsworth, P. Davies, D. Duncan, P. Martin and B. Rynnesfetbpics in
Computational Wave Propagation: Direct and Inverse ProldeSpringer-Verlag. Berlin. 2003.
pp. 43-82.

Chapko R and Kress R. Rothe’s method for the heat equatiorbanddary integral equationd.
Integral Equations Appl1997;9(1): 47-69.

Chudinovich I. The solvability of boundary equations in etxproblems for non-stationary Maxwell
systemMath. Meth. Appl. Scil997;20(5): 425—-448.

Chudinovich I. Boundary equations in dynamic problems efttieory of elasticityActa Appl. Math.
2001;65(1-3): 169-183. Special issue dedicated to Antonio Avagitagon the occasion of his
70th birthday.

Chudinovich 1Y. The boundary equation method in the thiriiahkboundary value problem of the
theory of elasticity. |. Existence theorenhath. Methods Appl. ScL.993a;16(3): 203-215.

Chudinovich 1Y. The boundary equation method in the thiriaitboundary value problem of the
theory of elasticity. 1l. Methods for approximate solutsoath. Methods Appl. Scil993b;
16(3): 217-227.

Chudinovich 1Y. On the solution by the Galerkin method of hdary equations in problems
of nonstationary diffraction of elastic waves by three-ditsional cracksDifferentsialnye
Uravneniyal993c;29(9): 1648-1651, 1656.

Costabel M. Boundary integral operators on Lipschitz devsakElementary resultSIAM J. Math.
Anal.1988;19: 613-626.

Costabel M. Boundary integral operators for the heat eqndtitegral Equations Oper. Theo4990;
13: 498-552.

Costabel M and Dauge M. On representation formulas andtradieonditionsMath. Meth. Appl. Sci.
1997;20: 133-150.

Costabel M, Onishi K and Wendland WL. A boundary elementamation method for the Neumann
problem of the heat equatiom HW. Engl and CW. Groetsch (edslpverse and lll-posed
Problems Academic Press. 1987. pp. 369-384.

Costabel M and Saranen J. Spline collocation for convahatiparabolic boundary integral equations.
Numer. Math2000;84(3): 417—-449.

Costabel M and Saranen J. Parabolic boundary integral mpsrsymbolic representation and basic
propertiesintegral Equations Operator Theo®001;40(2): 185-211.

Costabel M and Saranen J. The spline collocation methoddi@blic boundary integral equations on
smooth curvedNumer. Math2003;93(3): 549-562.

Cruse T. A direct formulation and numerical solution of tlengral transient elastodynamic problem.
II. J. Math. Anal. Appl1968;22: 341-455.

Encyclopedia of Computational Mechani&dited by Erwin Stein, René de Borst and Thomas J.R. Hughes
(© 2004 John Wiley & Sons, Ltd.



26 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

Cruse T and Rizzo F. A direct formulation and numerical sohutof the general transient
elastodynamic problem 0. Math. Anal. Appl1968;22; 244—-259.

Dahlberg B and Verchota G. Galerkin methods for the bouniiéegral equations of elliptic equations
in non-smooth domain€ontemporary Mathematicd990;107: 39-60.

Daschle C. Eine Raum-Zeit-Variationsformulierung zurs#®mung der Potentiale fir das
elektromagnetische Streuproblem im Auf3enraDiasertation Universitat Freiburg. 1992.

Davies B and Martin B. Numerical inversion of the Laplacensfarm: A survey and comparison of
methodsJ. Comput. Physl979;33(1): 1-32.

Davies PJ. Numerical stability and convergence of apprations of retarded potential integral
equationsSIAM J. Numer. Anafl994;31(3): 856—875.

Davies PJ. A stability analysis of a time marching schemdffergeneral surface electric field integral
equationAppl. Numer. Math1998;27(1): 33-57.

Davies PJ and Duncan DB. Averaging techniques for time-hagcschemes for retarded potential
integral equationsAppl. Numer. Math1997;23(3): 291-310.

Davies PJ and Duncan DB. Stability and convergence of catioe schemes for retarded potential
integral equationreprint NI03020 Newton Institute, Cambridge. 2003.

Faul AC and Powell MJD. Proof of convergence of an iteratigehnique for thin plate spline
interpolation in two dimensionsAdv. Comput. Math1999; 11(2-3): 183-192. Radial basis
functions and their applications.

Gaul L, Kdgl M and Wagner MBoundary Element Methods for Engineers and Scientgsinger-
Verlag. Berlin. 2003.

Gaul L and Schanz M. A comparative study of three boundamnefd approaches to calculate the
transient response of viscoelastic solids with unboundadsins. Comput. Methods Appl. Mech.
Eng.1999;179(1-2): 111-123.

Greengard L and Lin P. Spectral approximation of the fremzeheat kerneAppl. Comput. Harmon.
Anal.2000;9(1): 83-97.

Greengard L and Strain J. A fast algorithm for the evaluatibheat potentialsComm. Pure Appl.
Math.1990;43(8): 949—-963.

Ha-Duong T. On the transient acoustic scattering by a flatakjapan J. Appl. Math1990;7(3): 489—
513.

Ha-Duong T. On boundary integral equations associateddibesing problems of transient wavea..
Angew. Math. MechL996;76(Suppl. 2): 261-264.

Ha-Duong T. On retarded potential boundary integral equatiand their discretisationn
M. Ainsworth, P. Davies, D. Duncan, P. Martin and B. Rynnesjedopics in Computational
Wave Propagation: Direct and Inverse ProblerSBgringer-Verlag. Berlin. 2003. pp. 301-336.

Hamina M and Saranen J. On the spline collocation methodhéosingle-layer heat operator equation.
Math. Comp1994;62(2): 41-64.

Hebeker F-K and Hsiao GC. On Volterra boundary integral #gng of the first kind for nonstationary
Stokes equationsidvances in boundary element techniqu8pringer Ser. Comput. Mech..
Springer. Berlin. 1993. pp. 173-186.

Encyclopedia of Computational Mechani&dited by Erwin Stein, René de Borst and Thomas J.R. Hughes
(© 2004 John Wiley & Sons, Ltd.



TIME-DEPENDENT BOUNDARY INTEGRAL EQUATION METHOD 27

Hsiao GC and Saranen J. Boundary integral solution of thediwmnsional heat equatioMath.
Methods Appl. Scil993;16(2): 87-114.

Jiao D, Ergin AA, Balasubramaniam S, Michielssen E and Jih & fast higher-order time-domain
finite element-boundary integral method for 3-D electrometig scattering analysilEEE Trans.
Antennas and Propagatid?002;50(9): 1192-1202.

Khutoryansky NM and Sosa H. Dynamic representation forswalad fundamental solutions for
piezoelectricitylnternat. J. Solids Structurel995;32(22): 3307-3325.

Kress R.Linear Integral EquationsSpringer-Verlag. Berlin. 1989.

Kupradze VD, Gegelia TG, Basheleishvili MO and Burchukad@¥. Three-dimensional problems of
the mathematical theory of elasticity and thermoelasticiol. 25 of North-Holland Series in
Applied Mathematics and Mechanid?ussian edn. North-Holland Publishing Co.. Amsterdam.
1979.

Lubich C. On the multistep time discretization of lineartimi-boundary value problems and their
boundary integral equationsumer. Math1994;67: 365—-390.

Lubich C and Schneider R. Time discretisation of parabaligriwlary integral equationsumer. Math.
1992;63: 455—-481.

Mansur WJ. A time-stepping technique to solve wave propaggtroblems using the boundary
element method?hd ThesisUniversity of Southampton. 1983.

Michielssen E. Fast evaluation of three-dimensional ferisvave fields using diagonal translation
operatorsJ. Comput. Physl998;146(1): 157-180.

Michielssen E, Ergin A, Shanker B and Weile D. The multilepklne wave time domain algorithm
and its applications to the rapid solution of electromaignstattering problems: a review.
Mathematical and numerical aspects of wave propagatiomii&go de Compostela, 20Q0)
SIAM. Philadelphia, PA. 2000. pp. 24-33.

Nardini D and Brebbia C. A new approach to free vibration gsiglusing boundary elementéppl.
Math. Modelling1983;7: 157-162.

Partridge PW, Brebbia CA and Wrobel LOhe dual reciprocity boundary element method
International Series on Computational Engineering. Caatanal Mechanics Publications.
Southampton. 1992.

Peirce A and Siebrits E. Stability analysis of model proldefor elastodynamic boundary element
discretizationsNumer. Methods Partial Differential Equatiod996;12(5): 585-613.

Peirce A and Siebrits E. Stability analysis and design ofetstepping schemes for general
elastodynamic boundary element modét¢ernat. J. Numer. Methods Engr$j997;40(2): 319—
342.

Pogorzelski Wintegral Equations and their ApplicationBergamon Press. Oxford. 1966.

Powell MJD. The theory of radial basis function approximatin 1990.Advances in numerical
analysis, Vol. Il (Lancaster, 1990PDxford Sci. Publ.. Oxford Univ. Press. New York. 1992.
pp. 105-210.

Pujols A. Equations intégrales espace-temps pour lesyste Maxwell — application au calcul de la
surface équivalente Radamhese de doctoratJniversité Bordeaux I. 1991.

Encyclopedia of Computational Mechani&dited by Erwin Stein, René de Borst and Thomas J.R. Hughes
(© 2004 John Wiley & Sons, Ltd.



28 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

Rynne BP. The well-posedness of the electric field integnalation for transient scattering from a
perfectly conducting bodyath. Methods Appl. Sc1.999;22(7): 619-631.

Sayah T. Méthodes de potentiels retardés pour les miliétdrogenes et I'approximation des couches
minces par conditions d'impédance généraliséesagtreimagnétismeT.hése de doctoraEcole
Polytechnique. 1998.

Schanz M. A boundary element formulation in time domain fisceelastic solidsCommun. Numer.
Methods Eng1999;15(11): 799-809.

Schanz M. Application of 3D time domain boundary elementrfolation to wave propagation in
poroelastic solidsEng. Anal. Bound. Elen2001a;25(4-5): 363-376.

Schanz M.Wave Propagation in Viscoelastic and Poroelastic Continda Boundary Element
Approach Lecture Notes in Applied and Computational Mechanics.irgar-Verlag. Berlin,
Heidelberg, New York. 2001b.

Schanz M and Antes H. Application of ‘operational quadratorethods’ in time domain boundary
element methodsMeccanical997a;32(3): 179-186.

Schanz M and Antes H. A new visco- and elastodynamic time doBeundary Element formulation.
Comput. Mech1997b;20(5): 452—-459.

Telles JCF and Vera-Tudela CAR. A BEM NGF technique coupl&t the operational quadrature
method to solve elastodynamic crack problem$. Gallego and MH. Aliabadi (edshdvances
in Boundary Element Techniques. IDept. of Engineering, Queen Mary. University of London.
2003. pp. 1-6.

Terrasse |. Résolution mathématique et numérique geations de Maxwell instationnaires par une
méthode de potentiels retard@sese de doctoraEcole Polytechnique. 1993.

Wang CY, Zhang C and Hirose S. Dynamic fundamental solutmmstime-domain BIE formulations
for piezoelectric solidsin R. Gallego and MH. Aliabadi (edsjdvances in Boundary Element
Techniques IVDept. of Engineering, Queen Mary. University of London030pp. 215-224.

Encyclopedia of Computational Mechani&dited by Erwin Stein, René de Borst and Thomas J.R. Hughes
(© 2004 John Wiley & Sons, Ltd.



