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Historical time frame: 3×60 years

•1838–1840 Gauss: 2 papers, 1 book on Magnetism, Potential Theory
Single layer potential, 1st kind integral equation, computations

•1896 Poincaré: “La méthode de Neumann et le problème de Dirichlet”

•1956–1957 Calderón – Zygmund: “On singular integrals”
1959–1964 Agmon – Douglis – Nirenberg: “Estimates near the boundary. . . ”
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1965 Pseudodifferential Operators

1973 Nedelec – Planchard: “Une méthode variationnelle d’éléments finis
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3 Stories

1 “The curious case of Gauss’ missing theorem”.
Or “The single layer potential from 1839 to 1973”.

2 “Convergence of Neumann’s series”.
Or “The norm of the double layer potential from 1870 to 2007”.

3 “Symmetry of the spectrum of the double layer potential in 2D”.
Or “Interplay between boundary integral equations, volume integral
equations, and variational methods”.
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Story 1: Gauss’ Missing Theorem

Ω bounded Lipschitz domain in Rn, Γ = ∂ Ω.
Gauss 1839: First kind integral equation for the gravity potential (n = 3)

Vφ(x)≡
∫

Γ

φ(y)ds(y)

4π|x−y |
= f (x), x ∈ Γ

Variational approach: Minimize 1
2 〈φ ,Vφ〉−〈f ,φ〉.

Needed: Bilinear form 〈φ ,Vψ〉 is positiv definite.
• 2 principal methods: With or without looking at the integral operator.

[Gauss 1839] Looking at the kernel, obvious estimate∫
φ(x)φ(y)

|x−y |
ds(y)ds(x)≥

‖φ‖2
L1(Γ)

diam(Γ)
if φ ≥ 0

Gauss himself deplored that he needed the positivity of φ (→ variational
inequality) and wished that one could prove positivity of the bilinear form
without this assumption, but found that this is “not evident”.
Mystery: He had (almost) all the ingredients in his paper:

Jump relations and Green’s formula.
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Story 1: Gauss’ Missing Theorem, proved (without looking at the kernel)

Jump relation for the single layer potential (Ω− = Ω, Ω+ = R3 \Ω):

u(x) = S φ(x) =
∫

Γ

φ(y)ds(y)

4π|x−y |
in R3 =⇒ φ =−[∂nu]Γ = ∂

−
n u−∂

+
n u

Green’s formula

∆u = 0 =⇒
∫

Ω−
+
|∇u|2 dx = +

−
∫

Γ
u∂
−+
n u ds

Adding up (Vφ = u|Γ, φ =−[∂nu]Γ) :

〈φ ,Vφ〉=
∫
R3 |∇S φ |2 dx This is > 0 if φ 6= 0.

[Nedelec-Planchard 1973]

‖φ‖2
V = 〈φ ,Vφ〉 defines a norm on H−

1
2 (Γ), equivalent to the Sobolev

norm.
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Story 2: Norm of the double layer potential, Neumann – Poincaré

Dv(x) =
1

4π

∫
Γ

v(y)∂n(y)|x−y |−1ds(y) , Kv = Dv |Γ

Jump relations for the double layer potential u = Dv

[∂nu]Γ = 0 ; [γu]Γ = v ; γ−
+

u = (−+
1
2 + K )v

2nd kind integral equation for the Dirichlet problem ∆u = 0 in Ω, u = g on Γ

( 1
2 −K )v =−g or (1−N)v =−2g with N = 2K

If one can show that N is a contraction in some Banach space, one gets a
unique solution by successive approximation (“Neumann series”)

v =−2
∞

∑
`=0

N`g .
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Story 2: Norm of the double layer potential, C. Neumann

First approach (looking at the kernel)

dθx (y) =−n(y) · (y−x)

2π|x−y |3
ds(y)

is for x ∈ Γ a measure (solid angle) of total mass 1 on Γ,
positive if Ω is convex.

[C. Neumann 1877] Using hard analysis

If Ω is convex, but not the intersection of 2 convex cones, then N = 2K is a
contraction on L∞(Γ)/R in a norm equivalent to the L∞ norm.
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Story 2: Norm of the double layer potential, Poincaré
Second approach (without integral operators)

[Poincaré 1896] An energy inequality

There exists a constant µ > 0 depending on Ω such that
1 If u is a double layer potential, then

1
µ

∫
Ω+
|∇u|2 ≤

∫
Ω
|∇u|2 ≤ µ

∫
Ω+
|∇u|2

2 If u is a single layer potential, then∫
Ω
|∇u|2 ≤ µ

∫
Ω+
|∇u|2 and if

∫
Γ

u = 0 then
∫

Ω+
|∇u|2 ≤ µ

∫
Ω
|∇u|2

Poincaré: Proved for simply connected smooth domains.
Korn, Stekloff. . . : For Lyapunov domains.
Nowadays easy exercise for Lipschitz domains (Ω+ connected).

[Steklov 1900]

Nous appellerons ce théorème théorème fondamental. . . .
Nous verrons dans ce qui va suivre, que la solution de tous les problèmes
fondamentaux de la Physique mathématique se ramène à la démonstration
complète du théorème fondamental.
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Story 2: Norm of the double layer potential, Poincaré et. al.

u = S φ =⇒
∫

Ω−
+
|∇u|2 = +

−
∫

Γ
u∂
−+
n u =

∫
Γ

Vφ( 1
2 +
−K ′)φ

[Co 2007] Corollary of the “Théorème fondamental”

The operators A = 1
2 −K ′ and B = 1

2 + K ′ are bounded selfadjoint

operators on the space H−
1
2 (Γ) with norm ‖ · ‖V satisfying A + B = 1.

1 A is positive definite, hence B is a contraction, with norm

‖B‖ ≤ µ

1+µ
.

2 On the subspace H
− 1

2
0 = {φ | 〈φ ,1〉= 0}, B is positive definite, hence

both A and N ′ = A−B are contractions, and the Neumann series
converges in the norm ‖ · ‖V .

Proof of 1 : Poincaré⇒ 〈Vφ ,Bφ〉 ≤ µ〈Vφ ,Aφ〉 ⇒
‖φ‖2

V = 〈Vφ ,φ〉= 〈Vφ ,(A + B)φ〉≤ (1 + µ)〈Vφ ,Aφ〉 ⇒ A pos. def. and
〈Vφ ,Bφ〉= 〈Vφ ,φ〉−〈Vφ ,Aφ〉≤(1− 1

1+µ
)‖φ‖2

V = µ

1+µ
‖φ‖2

V

Same results for 1
2−+K in the space H

1
2 (Γ) with norm defined by the

quadratic form of V−1.
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Story 3: Essential spectrum of the double layer potential in 2D

Let Λ = σess(K ) in H
1
2 (Γ).

We have seen (in 3D, but this works in any dimension n ≥ 2): Λ⊂ ( 1
2 ,

1
2 ).

We want to prove for n = 2: Λ =−Λ

Remark [Co-Stephan 1981]

It is known that on Γ⊂ R2 piecewise smooth with corner angles ωj ∈ (0,2π), Λ is

the union of the intervals [− |π−ωj |
2π

,
|π−ωj |

2π
].

Two parts of the story:
1 Motivation:

Maxwell wave guide problem, formulated in two different ways via
volume integral equations;
Analysis of the VIEs by reduction to boundary integral equations;
Equivalence between the two formulations requires spectral symmetry.

2 Proof of spectral symmetry:
Boundary integral equation is equivalent to a scalar transmission
problem;
Two scalar transmission problems are equivalent.
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Story 3, Motivation: Maxwell 2D

Dielectric waveguide Ω×R, permittivity ε = εr ε0, permeability µ = µr µ0.
Fields do not depend on x3.
Equations (TE), valid in R2, prepared for Volume Integral Equations:

∂1E2−∂2E1− i kH3 = ik(µr −1)χΩH3 ;

∂2H3 + i kE1 = ik(1− εr )χΩE1 + J1 ;

−∂1H3 + i kE2 = ik(1− εr )χΩE2 + J2 .

1 Electric formulation (elimination of H3):

curlcurlE−k2E = curl
(

µr−1
µr

χΩ curlE
)

+ ik(1− εr )χΩE + J .

2 Magnetic formulation (elimination of E = (E1,E2), assumption χΩJ = 0):

−(∆ + k2)H3 = curl( εr−1
εr

χΩ curlH3)− ik(µr −1)χΩH3 .
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Story 3, Electric VIE

For simplicity: µr ≡ 1, J ≡ 0.

(PDE) curlcurlE−k2E = ik(1− εr )χΩE

Convolution with fundamental solution (+ radiation condition)

k−2(∇div+k2)gk , gk (x) =
i
4

H(1)
0 (k |x |)

(VIE) E +
(
∇div+k2)gk ∗ (1− εr )χΩE = E0

Task

Analyze the strongly singular volume integral equation (1 + Ak )E = E0 with

Ak E =
(
∇gk ∗div+k2gk ∗

)
(1− εr )χΩE

Simplification: k = 0, εr = const, divE = 0
(
On ∇H1

0 (Ω), A0 = (εr −1)I
)
:

A0E = (εr −1)∇S (n ·E)

Spectrally equivalent to (interchanging ∇S and n·)

(εr −1)∂nS = (εr −1)( 1
2 + K ′)
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Story 3, Electric VIE, conclusion

[Costabel-Darrigrand-Sakly 2015]

The “electric” VIE is Fredholm in H(curl,Ω) if and only if εr 6= 0 and the
boundary integral operator

1− (1− εr )( 1
2 + K ′)

is Fredholm in H−
1
2 (Γ).

In our notation, the condition is

Fredholmness condition, electric VIE

1 + εr

2(1− εr )
6∈ Λ ⇐⇒ εr 6=

2λ −1
2λ + 1

∀λ ∈ Λ
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Story 3, Magnetic VIE

(PDE) −(∆ + k2)H3 = curl( εr−1
εr

χΩ curlH3)

Convolution with fundamental solution gk :

(VIE) H3−curlgk ∗ ( εr−1
εr

χΩ curlH3) = H0
3

Task

Analysis of the strongly singular volume integral operator
(for k = 0 and εr = const)

curlgk ∗ (χΩ curl) = 1 +Dγ

Thus 1 + εr−1
εr

curlgk ∗ (χΩ curl) on H1(Ω) is equivalent to

1− εr−1
εr

( 1
2 + K ) = εr−1

εr

(
εr +1

2(εr−1) −K
)

on H
1
2 (Γ)

Fredholmness condition, magnetic VIE

εr + 1
2(εr −1)

6∈ Λ ⇐⇒ εr 6=
2λ + 1
2λ −1

∀λ ∈ Λ
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Story 3, Proof of Λ =−Λ, without integral operators

We consider a larger domain

Ω̂ = Ω∪Γ∪ Ω̂+

The transmission problem (with Dirichlet condition on ∂ Ω̂)

divε∇u = f , u ∈ H1
0 (Ω̂) , ε =

{
εr in Ω

1 in Ω̂+

can be reduced to a boundary integral equation using a single layer
potential via

u = w +S ψ with w ∈ H1
0 (Ω)⊕H1

0 (Ω̂+) , ε∆w = f

The integral operator corresponds to the jump in the conormal derivative

(εr ∂
−
n −∂

+
n )S = εr ( 1

2 + K ′)− (− 1
2 + K ′) = 1

2 (εr + 1)− (1− εr )K ′

Proposition

divε∇ : H1
0 (Ω̂)→ H−1(Ω̂) is Fredholm if and only if

1 + εr

2(1− εr )
6∈ Λ .
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Story 3, Proof of Λ =−Λ, The End

The proof is concluded using the

Lemma [Bonnet-Ben Dhia – Chesnel – Ciarlet 2014, Co–Dar–Sak 2015]

Let Ω⊂ R2 be a bounded Lipschitz domain and let the complex-valued
coefficient function ε ∈ L∞(Ω) satisfy 1

ε
∈ L∞(Ω). Then

divε∇ : H1
0 (Ω)→ H−1(Ω)

is Fredholm if and only if

div 1
ε

∇ : H1(Ω)→
(
H1(Ω)

)′
is Fredholm.

Thus 1+εr
2(1−εr ) 6∈ Λ ⇐⇒ 1+ 1

εr
2(1− 1

εr
)
6∈ Λ

But λ = 1+εr
2(1−εr ) =⇒ 1+ 1

εr
2(1− 1

εr
)

=−λ CQFD.
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Thank you for your attention!

All the best, Patrick, for the second 60 years !
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