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The inf-sup Constant: Definition

Ω bounded domain in Rd (d ≥ 1 ). No regularity assumptions.

The inf-sup constant of Ω

β (Ω) = inf
q∈L2◦(Ω)

sup
v∈H1

0 (Ω)d

∫
Ω

divv q

|v |
1
‖q‖

0

L2(Ω) space of square integrable functions q on Ω . Norm ‖q‖
0

H1(Ω) Sobolev space of v ∈ L2(Ω) with gradient ∇v ∈ L2(Ω)d

L2
◦(Ω) subspace of q ∈ L2(Ω) with

∫
Ω q = 0 .

H1
0 (Ω) closure in H1(Ω) of C∞

0 (Ω) (zero trace on ∂ Ω)
(Semi-)Norm |u|

1
= ‖∇u‖

0
equivalent to norm ‖u‖

H1(Ω)

• β (Ω) is invariant with respect to translations, rotations, dilations.

• We will often talk about σ(Ω) = β (Ω)2 instead of β (Ω).
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The inf-sup Constant: Known Values

Ball in Rd : σ(Ω) =
1
d

[Ellipsoids in 3D: E.&F. Cosserat 1898]

In 2D:

Ellipse
x2

a2 +
y2

b2 < 1, a < b: σ(Ω) =
a2

a2 + b2

Some other domains with simple conformal mappings, for example:

Annulus a < r < 1: σ(Ω) =
1
2
− 1

2

√
1−a2

1 + a2

1
log1/a

[Chizhonkov-Olshanskii 2000]
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The inf-sup Constant: Known Estimates

Always true: 0≤ β (Ω)≤ 1

Any bounded Lipschitz domain Ω: β (Ω) > 0
[“inf-sup condition”, “LBB condition”] Why LBB?

Any finite union of bounded star-shaped domains: β (Ω) > 0

Inward cusps, cracks: OK, β (Ω) > 0

Domains with an outward cusp: β (Ω) = 0

Any bounded John domain Ω: β (Ω) > 0 [R. Duran et al. 2006]
Digression: Starshaped and John domains

Rectangle of aspect ratio a� 1:
a2

4
≤ σ(Ωa)≤ π2

12
a2 and

σ(Ωa)≤ 1
2
− 1

π
≈ 0.18169
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The inf-sup Constant: The square

The square Ω = (0,1)× (0,1) =: �⊂ R2

The Square

β (�) is currently still unknown !

Conjecture 1 [Horgan-Payne 1983]

σ(�) =
2
7
≈ 0.2857... (→ β (�)≈ 0.5345)

Conjecture 2 [current]

σ(�) =
1
2
− 1

π
≈ 0.18169... (→ β (�)≈ 0.42625)

Why not simply
compute it ?
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The inf-sup Constant: A Finite Element Computation for Rectangles

Computation on rectangles with aspect ratio 0.1 . . .1
80 elements (Q15,Q12), ∼ 30000 dof
First Cosserat eigenvalue (computed with a Stokes solver)
• σ(Ω) = β (Ω)2 is the minimum of the Cosserat spectrum

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3
Rectangles, lowest Cosserat eigenvalue, deg 15,12

aspect  ratio

σ
 =

 β
2

 

 
σ (Ωa)

ess spectrum
upper bound
lower bound[H−P]
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Motivation: LBB condition and the Stokes system

Consider the Stokes problem for u ∈ H1
0(Ω), p ∈ L2

◦(Ω):

−∆u + ∇p = f in Ω

divu = 0 in Ω

Pressure Stability for the Stokes problem

Let Ω be such that β (Ω) > 0. Let CP be the constant in the Poincaré
inequality

‖v‖L2(Ω) ≤ CP ‖∇v‖L2(Ω) ∀v ∈ H1
0 (Ω) .

Then for f ∈ L2(Ω) there exists a unique solution (u,p) of the Stokes
problem, and

‖∇u‖L2(Ω) ≤ CP ‖f‖L2(Ω)

‖p‖L2(Ω) ≤
2Cp

β (Ω)
‖f‖L2(Ω)
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Computing β (Ω): The Discrete inf-sup Constant

Conforming discretization: VN ⊂ H1
0 (Ω)d , MN ⊂ L2

◦(Ω)

The discrete inf-sup constant of (VN ,MN)

βN = inf
q∈MN

sup
v∈VN

∫
Ω

divv q

|v |
1
‖q‖

0

Galerkin approximation of the Stokes system

(uN ,pN) ∈ VN ×MN :∫
Ω

∇uN ·∇v−
∫

Ω
divv pN =

∫
Ω

f ·v ∀ v ∈ VN∫
Ω

divuN q = 0 ∀ q ∈MN

Necessary and sufficient condition for stability of Galerkin scheme

(Babuška-Brezzi) inf
N

βN = β0 > 0
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Continuous vs Discrete inf-sup Constant

In general, one can have βN ≤ β (Ω) or βN ≥ β (Ω) .
No general rule known.

Lemma

If (MN)N approximates L2
◦(Ω), then

limsup
N

βN ≤ β (Ω)
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∃vN ∈ VN :
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=
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−‖qN −q‖
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Continuous vs Discrete inf-sup Constant

In general, one can have βN ≤ β (Ω) or βN ≥ β (Ω) .
No general rule known.

Lemma

If (MN)N approximates L2
◦(Ω), then

limsup
N

βN ≤ β (Ω)

Well-studied question: Bound βN from below

For p and hp version:

Triangles: Vogelius 1983, Scott-Vogelius 1985

Quads: Bernardi-Maday 1999
Stenberg-Suri 1996
Schötzau-Schwab 1999
Ainsworth-Coggins 2000, 2002
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For p and hp version:

Triangles: Vogelius 1983, Scott-Vogelius 1985

Quads: Bernardi-Maday 1999
Stenberg-Suri 1996
Schötzau-Schwab 1999
Ainsworth-Coggins 2000, 2002

Our question here: When is lim
N

βN = β (Ω) ?
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Rectangle of aspect ratio a = 0.5: σ(Ω) = 0.14996..

Almost singular “Four Corners” triangulation
Scott-Vogelius P4−Pdc

3 : σN = 0.000021
P4−P3: σN = 0.149769

P4−Pdc
2 : σN = 0.153970

P4−P2: σN = 0.154518

Refined mesh, P4−P2: σN = 0.151573
(Freefem++)

Geometric refinement at corners,
Q16−Q14: σN = 0.149960

(Melina++)

Martin Costabel (Rennes) Computing the inf-sup constant Salt Lake City, 25 Jun 2014 11 / 49



Square according to [Ainsworth-Coggins 2002] β (Ω)≤ 0.42625.

Martin Costabel (Rennes) Computing the inf-sup constant Salt Lake City, 25 Jun 2014 12 / 49



Square according to [Ainsworth-Coggins 2002] β (Ω)≤ 0.42625.
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hp for Stokes according to [Ainsworth-Coggins 2002]
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Relation with the Cosserat eigenvalue problem

[Eugène & François Cosserat 1898]

Find u ∈ H1
0 (Ω)\{0}, σ ∈ C such that

σ∆u−∇divu = 0 .

Their aim: Solving the Lamé Dirichlet problem by eigenfunction expansion.

For σ 6= 0, equivalent eigenvalue problem:

div∆−1
∇q = σq in L2

◦(Ω).

Definition: Cosserat operator S = div∆−1∇ Selfadjoint, positive, ≤ 1.

The Cosserat eigenvalue problem is a Stokes eigenvalue problem

Find u ∈ H1
0 (Ω), p ∈ L2

◦(Ω)\{0}, σ ∈ C:

−∆u + ∇p = 0 in Ω

divu = σp in Ω

The Cosserat operator S is the Schur complement of the Stokes systemMartin Costabel (Rennes) Computing the inf-sup constant Salt Lake City, 25 Jun 2014 15 / 49
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Relation with the Cosserat eigenvalue problem

This is not an elliptic eigenvalue problem! σ = 1 has infinite multiplicity

q = ∆φ , φ ∈ H2
0 (Ω)⇒∆−1∇q = ∇φ ⇒S q = q.

Define σ(Ω) = min( Spectrum S )

Known results [Cosserats, Nečas, Maz’ya–Mikhlin]

Ball in Rd : σ(Ω) =
1
d

, σk = k
2k+d−2 , k ≥ 1

Bounded Lipschitz domains: σ(Ω) > 0
σ = 1 is an isolated eigenvalue,
σ = 1

2 is accumulation point of eigenvalues

Smooth domains (C3 [Crouzeix 1997]):
σ = 1

2 is the only accumulation point of eigenvalues

A simple relation

σ(Ω) = β (Ω)2.

Proof

Martin Costabel (Rennes) Computing the inf-sup constant Salt Lake City, 25 Jun 2014 16 / 49



Relation with the Cosserat eigenvalue problem

This is not an elliptic eigenvalue problem! σ = 1 has infinite multiplicity

q = ∆φ , φ ∈ H2
0 (Ω)⇒∆−1∇q = ∇φ ⇒S q = q.

Define σ(Ω) = min( Spectrum S )

Known results [Cosserats, Nečas, Maz’ya–Mikhlin]

Ball in Rd : σ(Ω) =
1
d

, σk = k
2k+d−2 , k ≥ 1

Bounded Lipschitz domains: σ(Ω) > 0
σ = 1 is an isolated eigenvalue,
σ = 1

2 is accumulation point of eigenvalues

Smooth domains (C3 [Crouzeix 1997]):
σ = 1

2 is the only accumulation point of eigenvalues

A simple relation

σ(Ω) = β (Ω)2.

Proof
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Reformulation as Cosserat or Stokes eigenvalue problem

Advantages

Standard code available: Stokes + matrix eigenvalue problem

Eigenfunctions can be looked at

Disadvantage

There is no theory for the approximation of this eigenvalue problem.

Stokes eigenvalue problem, first kind

Find u ∈ H1
0 (Ω), p ∈ L2

◦(Ω)\{0},
σ ∈ C:

−∆u + ∇p = σu in Ω

divu = 0 in Ω

Known: Discrete LBB condition
guarantees spectral convergence.

Stokes eigenvalue problem, second kind

Find u ∈ H1
0 (Ω), p ∈ L2

◦(Ω)\{0},
σ ∈ C:

−∆u + ∇p = 0 in Ω

divu = σp in Ω

No convergence proof known.
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Rectangle: First 2 Cosserat eigenfunctions

Rectangle, aspect ratio 0.4

Degrees: 6,3
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Degrees: 15,12
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Rectangle: First eigenfunction

Rectangle, aspect ratio 0.1
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Rectangle: First eigenfunction

Rectangle, aspect ratio 0.2
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Rectangle: First eigenfunction

Rectangle, aspect ratio 0.4
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Rectangle: First eigenfunction

Rectangle, aspect ratio 0.6
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Rectangle: First eigenfunction

Rectangle, aspect ratio 0.8
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Rectangle: First eigenfunction

Rectangle, aspect ratio 1.0
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Square: First eigenfunction, (Q17,Q16)
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Square: First eigenfunction, (Q17,Q16)
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Square: Fourth eigenfunction, (Q17,Q16)
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Square: Fourth eigenfunction, (Q17,Q16)
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k = 8 and ` = 4. Strongly refined mesh
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degu = 8 & degp = 4.    Mesh = Ratio1024 lay5 dens1
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k = 8 and ` = 5. Strongly refined mesh
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k = 8 and ` = 6. Strongly refined mesh
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k = 8 and ` = 7. Strongly refined mesh
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Again, for comparison: k = 8 and ` = 4. Uniform grid
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Corner singularities

For σ 6∈ {0, 1
2 ,1}, the operator Aσ =−σ∆ + ∇div is elliptic.

If Ω⊂ R2 has a corner of opening ω , one can therefore determine the
corner singularities via Kondrat’ev’s method of Mellin transformation:
Look for solutions of the form rλ φ(θ) in a sector. → q ∼ rλ−1φ(θ)
Characteristic equation (Lamé system, known!) for a corner of opening ω :

(∗) (1−2σ)
sinλω

λ
=−+sinω.

Theorem [Kondrat’ev 1967]

For σ ∈ [0,1]\{0, 1
2 ,1}, Aσ : H1

0 (Ω)→ H−1(Ω) is Fredholm iff the equation
(∗) has no solution on the line Reλ = 0.

With z = λω , we rewrite (∗):

(1−2σ)
sinz

z
=−+

sinω

ω
.

Result :
(∗) has roots on the line Reλ = 0 iff |1−2σ |ω ≤ |sinω|
If |1−2σ |ω > |sinω|, there is a real root λ ∈ (0,1)
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Essential spectrum: Corners

Theorem [Crouzeix, Costabel-Dauge]

Ω⊂ R2 piecewise smooth with corners of opening ωj .

Spess(S ) =
⋃

corners j

[ 1
2 −

|sinωj |
2ωj

, 1
2 +

|sinωj |
2ωj

]
∪ {1}

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

!  en  " rd

#

Figure: Essential spectrum: σ vs. opening ω

Example : Rectangle, ω = π

2

Spess(S
∣∣∣
M

) = [ 1
2 −

1
π
, 1

2 + 1
π

]

≈ [0.181, 0.818]

Corollary

For square, rectangles,
rectangular cylinders in 3D:

β (Ω)2 ≤ 1
2 −

1
π
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Exponent of singularity vs Cosserat eigenvalue (Rectangle: green line)
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Computations on Cupid’s Bow, and H-P inequality

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Cupid’s Bows, c=0..5

 

 
 r=exp(−cθ)

Logarithmic spirals: r = e−cθ ,0≤ θ ≤ π

2 + symmetries
Horgan-Payne angle: Minimal angle between radius vector and tangent

ω(Ω) = arctan 1
c

Horgan-Payne inequality: β (Ω)≥ sin ω(Ω)
2

β (Ω)2 ≥
√

c2 + 1−c

2
√

c2 + 1
=

1
4c2 + O(c−4) as c→ ∞ .

Upper bound [Costabel-Dauge 2013]

β (Ω)2 ≤ 128
3

c e−cπ

1−e−cπ
( 128

3 → π [Co-Da-Crouzeix])
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Cupid’s Bow
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Thank you for your attention!

Thanks also to the sponsors of ICOSAHOM 2014:
NSF, ONR, AFOSR, ARO
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Lions’ lemma

Lemma [Lions 1958, unpublished∗, for smooth domains] [Nečas 1967 for Lipschitz domains]

‖q‖
2

0
≤ C(Ω) |∇q|

2

−1
∀q ∈ L2

◦(Ω)

∗ According to [E. Magenes and G. Stampacchia 1958].

→ C(Ω) =
1

β(Ω)2
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Lions’ lemma

Lemma [Lions 1958, unpublished∗, for smooth domains] [Nečas 1967 for Lipschitz domains]

‖q‖
2

0
≤ C(Ω) |∇q|

2

−1
∀q ∈ L2

◦(Ω)

H−1(Ω) dual space of H1
0 (Ω) with dual norm | · |−1

:

For q ∈ L2
◦(Ω):

|∇q|−1
= sup

v∈H1
0 (Ω)d

〈
∇q,v

〉
Ω

|v |
1

= sup
v∈H1

0 (Ω)d

∫
Ω divv q

|v |
1,Ω

β (Ω) = inf
q∈L2◦(Ω)

|∇q|−1

‖q‖
0

→ C(Ω) =
1

β (Ω)2
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Lions’ Lemma and Right Inverse of the Divergence

Lions’ Lemma⇐⇒ ∇ : L2
◦(Ω)→ H−1(Ω)d is injective with closed range

⇐⇒ div : H1
0 (Ω)d → L2

◦(Ω) is surjective

Babuška-Aziz inequality [Babuška-Aziz 1971], named by [Horgan-Payne 1983]

Ω Lipschitz, q ∈ L2
◦(Ω) =⇒ ∃v ∈ H1

0 (Ω)d : divv = q

|v |
2

1
≤ C(Ω)‖q‖

2

0

Equivalence for any domain Ω:

β (Ω) > 0⇐⇒ Lions’ lemma ⇐⇒ Babuška-Aziz inequality

This condition (and its discrete counterpart) is called inf-sup condition or LBB
condition, after

Ladyzhenskaya Added by J. T. Oden ca 1980, on suggestion by J.-L. Lions

Babuška [Babuška 1971-73]

Brezzi [Brezzi 1974]
back
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Starshaped domains

Theorem [Bogovskiı̆ 1979], [Galdi 1994]

Let Ω⊂ Rn be contained in a ball of radius R, starshaped with respect to a
concentric ball of radius ρ . There exists a constant γd only depending on
the dimension d such that

β (Ω)≥ γd

(
ρ

R

)d+1

In dimension d = 2, we can prove

β (Ω)≥ ρ

2R

M. COSTABEL, M.DAUGE: On the inequalities of Babuška-Aziz, Friedrichs and
Horgan-Payne. arXiv 2013.
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John domains

Theorem [Acosta-Durán-Muschietti 2006], [Durán 2012]

Let Ω⊂ Rd be a bounded John domain. Then β (Ω) > 0.

Martin Costabel (Rennes) Computing the inf-sup constant Salt Lake City, 25 Jun 2014 43 / 49



John domains

Theorem [Acosta-Durán-Muschietti 2006], [Durán 2012]

Let Ω⊂ Rd be a bounded John domain. Then β (Ω) > 0.

Ω

Figure: Not a John domain: Outward cusp, β (Ω) = 0 [Friedrichs 1937]
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Definition of John Domain

Definition

A domain Ω⊂ Rd with a distinguished point x0 is called a John domain if it
satisfies the following “twisted cone” condition:
There exists a constant δ > 0 such that, for any y in Ω, there is a rectifiable
curve γ : [0, `]→ Ω parametrized by arclength such that

γ(0) = y , γ(`) = x0, and ∀t ∈ [0, `] : dist(γ(t),∂ Ω)≥ δ t .

Here dist(γ(t),∂ Ω) denotes the distance of γ(t) to the boundary ∂ Ω.

Example : Every weakly Lipschitz domain is a John domain.
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A John domain: Union of Lipschitz domains

San Juan de la Peña, Jaca 2013
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A John domain: Zigzag

Figure: A weakly Lipschitz domain: the self-similar zigzag
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John domains: Spirals

Figure: Weakly Lipschitz (left), John domain (right)
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Fractal John domains: Tree or Lung

Figure: A John domain: the infinite tree
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Proof

−∆ : H1
0 (Ω)→ H−1(Ω) is the Riesz isometry.

Let q ∈ L2
◦(Ω). 〈

Sq,q
〉

=
〈

div∆−1
∇q,q

〉
=
〈
−∆−1

∇q,∇q
〉

= |∇q|
2

−1

=
(

sup
v∈H1

0 (Ω)d

〈
∇q,v

〉
|v |

1

)2

σ(Ω) = inf
q∈L2◦(Ω)

〈
Sq,q

〉〈
q,q
〉 = β (Ω)2

back
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