Computing the inf-sup constant of the divergence

Martin Costabel

Collaboration with Monique Dauge
with contributions from C. Bernardi, V. Girault, M. Crouzeix, Y. Lafranche

IRMAR, Université de Rennes 1

ICOSAHOM 2014
Salt Lake City, 23—27 June 2014

Martin Costabel (Rennes) Computing the inf-sup constant Salt Lake City, 25 Jun 2014 1/49



Publications

ﬁ M. DAUGE, C. BERNARDI, M. COSTABEL, V. GIRAULT
On Friedrichs constant and Horgan-Payne angle for LBB condition
Monogr. Mat. Garcia de Galdeano (2014)

ﬁ M. COSTABEL, M. DAUGE
On the inequalities of Babuska—Aziz, Friedrichs and Horgan—Payne
(2013) http://fr.arxiv.org/abs/1303.6141

@ M. CoSTABEL, M. CROUZEIX, M. DAUGE, Y. LAFRANCHE
The inf-sup constant for the divergence on corner domains
Num. Meth. for Partial Diff. Eq. (2014).

Martin Costabel (Rennes) Computing the inf-sup constant Salt Lake City, 25 Jun 2014 2/49



The inf-sup Constant: Definition

@ Q bounded domain in RY (d > 1). No regularity assumptions.

The inf-sup constant of 2

/divvq
B(Q)= inf  sup L——
ger2@) very@? v, llall,

Martin Costabel (Rennes) Computing the inf-sup constant Salt Lake City, 25 Jun 2014 3/49



The inf-sup Constant: Definition

@ Q bounded domain in RY (d > 1). No regularity assumptions.

The inf-sup constant of 2

/divvq
B(Q)= inf sup N T
qel3(Q) veHl(Q)? |V|1 ||q||0

L2(R) space of square integrable functions g on Q. Norm || 0
H'(Q) Sobolev space of v € L2(£2) with gradient Vv € L2(Q)?
L2(2) subspace of g € L2(2) with [, g =0.

H3(2) closure in H'(2) of CF(2) (zero trace on 1)
(Semi-)Norm |u|1 = |IVu|| , €quivalent to norm [lull (@

)
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The inf-sup Constant: Definition

@ Q bounded domain in RY (d > 1). No regularity assumptions.

The inf-sup constant of 2

/divvq
B(Q)= inf sup N T
qel3(Q) veHl(Q)? |V|1 ||q||0

L2(R) space of square integrable functions g on Q. Norm || 0
H'(Q) Sobolev space of v € L2(£2) with gradient Vv € L2(Q)?
L2(2) subspace of g € L2(2) with [, g =0.

H3(2) closure in H'(2) of CF(2) (zero trace on 1)
(Semi-)Norm |u|1 = |IVu|| , €quivalent to norm [lull (@

)
e (3(Q) is invariant with respect to translations, rotations, dilations.
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The inf-sup Constant: Definition

@ Q bounded domain in RY (d > 1). No regularity assumptions.

The inf-sup constant of 2

/divvq
B(Q)= inf sup N T
qel3(Q) veHl(Q)? |V|1 ||q||0

L2(R) space of square integrable functions g on Q. Norm || 0
H'(Q) Sobolev space of v € L2(£2) with gradient Vv € L2(Q)?
L2(2) subspace of g € L2(2) with [, g =0.

H3(2) closure in H'(2) of CF(2) (zero trace on 1)
(Semi-)Norm |u|1 = |IVu|| , €quivalent to norm [lull (@

)
e (3(Q) is invariant with respect to translations, rotations, dilations.

e We will often talk about | o(Q2) = B(Q)? |instead of ().
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The inf-sup Constant: Known Values

1
BallinR?: o(Q) = p [Ellipsoids in 3D: E.&F. Cosserat 1898] J
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The inf-sup Constant: Known Values

1
BallinR?: o(Q) = p [Ellipsoids in 3D: E.&F. Cosserat 1898] J
In 2D:

X2 2 B
Elllpse?+?<1,a<b: G(Q):m J
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The inf-sup Constant: Known Values

1
BallinR?: o(Q) = p [Ellipsoids in 3D: E.&F. Cosserat 1898] J
In 2D:

X2 2 B
Elllpse?+?<1,a<b: G(Q):m J

Some other domains with simple conformal mappings, for example:

1 1 [1-2 1
Annulus a<r<1: G(Q):E_E 1+a2log1/a

[Chizhonkov-Olshanskii 2000]
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The inf-sup Constant: Known Estimates

Always true: 0 < (Q) <1 J
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The inf-sup Constant: Known Estimates

Always true: 0 < B(Q2) <1 |
Any bounded Lipschitz domain Q: () >0
[“inf-sup condition”, “LBB condition”] J
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The inf-sup Constant: Known Estimates

Always true: 0 < B(Q2) <1

Any bounded Lipschitz domain Q: () >0
[“inf-sup condition”, “LBB condition”]

Any finite union of bounded star-shaped domains: () > 0

Inward cusps, cracks: OK, 3(2) >0
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The inf-sup Constant: Known Estimates

Always true: 0 < B(Q2) <1 )
Any bounded Lipschitz domain Q: () >0
[“inf-sup condition”, “LBB condition”]

Any finite union of bounded star-shaped domains: [(2) >0 )

Inward cusps, cracks: OK, 3(2) >0

Domains with an outward cusp: [(2) =0 J
Any bounded John domain Q: () >0 [R. Duran et al. 2006]
J
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The inf-sup Constant: Known Estimates

Always true: 0 < B(Q2) <1

Any bounded Lipschitz domain Q: () >0
[“inf-sup condition”, “LBB condition”]

Any finite union of bounded star-shaped domains: () > 0

Inward cusps, cracks: OK, 3(2) >0

Domains with an outward cusp: [(2) =0

Any bounded John domain Q: () >0 [R. Duran et al. 2006]

» Digression: Starshaped and John domains

2 7.[.2
Rectangle of aspect ratio a < 1: % <0o(Qy) < Eez2 and
1 1
Q)< -——=~0.18169
0(82,) < 5 1
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The inf-sup Constant: The square

The square Q = (0,1) x (0,1) =: [ C R?

The Square
B(0) is currently still unknown !
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The inf-sup Constant: The square

The square Q = (0,1) x (0,1) =: [ C R?

The Square
B(0) is currently still unknown !

Conjecture 1 [Horgan-Payne 1983]

o(0) = ; ~0.2857... (— B(0)=~0.5345)

C. O. HORGAN AND L. E. PAYNE, On inequalities of Korn, Friedrichs and
Babuska-Aziz. Arch. Rational Mech. Anal., 82 (1983), pp. 165—-179.
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The inf-sup Constant: The square

The square Q = (0,1) x (0,1) =: [ C R?

The Square
B(0) is currently still unknown !

Conjecture 1 [Horgan-Payne 1983]
2
c(0d)= = 0.2857...  (— PB(0)~0.5345)

V.

Conjecture 2 [current]

11
o()=5 - —~018169..  (— B(D)~0.42625)
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The inf-sup Constant: The square

The square Q = (0,1) x (0,1) =: [ C R?

The Square
B(0) is currently still unknown !

Conjecture 1 [Horgan-Payne 1983]
2
c(0d)= = 0.2857...  (— PB(0)~0.5345)
Conjecture 2 [current]

11
o()=5 - —~018169..  (— B(D)~0.42625)

Why not simply
compute it ?
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The inf-sup Constant: A Finite Element Computation for Rectangles

Computation on rectangles with aspect ratio 0.1...1
80 elements (Q15, Q12), ~ 30000 dof
First Cosserat eigenvalue (computed with a Stokes solver)
e 5(Q) = B(Q)? is the minimum of the Cosserat spectrum

Rectangles, lowest Cosserat eigenvalue, deg 15,12

0.3 T T T T T
——0(Q)
ess spectrum
0.25| upper bound i
lower bound[H-P]
0.2f 1
o
«
n 0151
o
0.1f
0.05-
0 L L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

aspect ratio
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Motivation: LBB condition and the Stokes system

Consider the Stokes problem for u € H}(Q), p € L2(Q):

—Au+Vp=f in Q
divu=0 in Q

Pressure Stability for the Stokes problem

Let Q be such that B(€2) > 0. Let Cp be the constant in the Poincaré
inequality
IVlizi) < CrlIVVIiz@ — VveH(Q).

Then for f € L3(Q) there exists a unique solution (u, p) of the Stokes
problem, and
||VUHL2(Q) < CPWHLZ(Q)
2C
Pl 20y < z7es 1fll.2
B = gg) '@
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Computing B(2): The Discrete inf-sup Constant

@ Conforming discretization: Viy C HJ ()9, My C L2(%)

The discrete inf-sup constant of ( Vi, My)

/divvq
JoQ

acm veww v, llall,

Bnv= inf sup
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Computing B(2): The Discrete inf-sup Constant

@ Conforming discretization: Viy C HJ ()9, My C L2(%)

The discrete inf-sup constant of (Vy, My)

/divvq
By= inf sup 22—
qEMy VvEVN |V‘1 HqHO

| A

Galerkin approximation of the Stokes system
(un,pn) € Vv X My :

/VuN~Vv—/divva:/f'v VveWy
Q Q Q

/diquqzo Y qge My
Q

Necessary and sufficient condition for stability of Galerkin scheme

(Babuska-Brezzi) inf Bn=PBo>0
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Continuous vs Discrete inf-sup Constant

In general, one can have |y < B(Q2)| or |Bn=>B(Q)].
No general rule known.

If (Mn)n approximates L2(£), then
limsup By < B($2)
N
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Continuous vs Discrete inf-sup Constant
In general, one can have | By < B(2)| or |Bn=>B(Q)].

No general rule known.

If (Mn)n approximates L2(£), then
limsup By < B($2)
N

Proof: Let g € L2(Q2), gn € Mn, gn — G, By — B

divvy,
Tvy e vy TIL 5 g
vl
(divvn,@)o _ (divvy,gv)e  (divvn,gy—3g)e
lvnl vl vl

> Bullawll,— lav—all, — B-llall,
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Continuous vs Discrete inf-sup Constant
In general, one can have | By < B(2)| or |Bn>B(Q)].

No general rule known.

If (Mn)n approximates L2(£), then
limsup By < B($2)
N

Proof: Let g € L2(Q2), gn € Mn, gn — G, By — B

divvy,
Tvy e vy STIID 5 gy
vl
(divvn,g)o _ (divvn,gv)e  (divvn,gy—g)e
vl vl vl

> Bullawll,— lav—all, — B-llall,
= B(Q) > B
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Continuous vs Discrete inf-sup Constant

In general, one can have |y < B(Q)| or |Bn>B(2)].
No general rule known.

If (Mn)n approximates L2(£), then
limsup By < B($2)
N

v

Well-studied question: Bound By from below

For p and hp version:

Triangles: Vogelius 1983, Scott-Vogelius 1985

Quads: Bernardi-Maday 1999
Stenberg-Suri 1996
Schotzau-Schwab 1999
Ainsworth-Coggins 2000, 2002
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Continuous vs Discrete inf-sup Constant

In general, one can have |y < B(Q)| or |Bn>B(2)].
No general rule known.

Lemma

If (My)n approximates L2(S2), then
limsup By < B()
N

Well-studied question: Bound By from below

For p and hp version:

Triangles: Vogelius 1983, Scott-Vogelius 1985

Quads: Bernardi-Maday 1999
Stenberg-Suri 1996
Schoétzau-Schwab 1999
Ainsworth-Coggins 2000, 2002

Our question here:  When is Iilr\p Bn=P(Q)|?

Martin Costabel (Rennes) Computing the inf-sup constant

Salt Lake City, 25 Jun 2014

10/49



Rectangle of aspect ratio a=0.5: ¢(Q) = 0.14996..

(Freefem++)

(Melina++)

Martin Costabel (Rennes) Computing the inf-sup constant

Refined mesh, Ps—Po:

Almost singular “Four Corners” triangulation
Scott-Vogelius Ps—Pge:
P P4— P3Z
- Py —Pge:
= P4— P2:

on = 0.000021
oy = 0.149769
on = 0.153970
oy = 0.154518
oy = 0.151573

Geometric refinement at corners,
Qis—Qu4:

on = 0.149960
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045 L L L ! L !
4 6 8 10 12 14 16 18 20 22 24

Polynomial degree k

Variation of inf-sup constants for Q; — Py_1 and Qy — Q;c—l methods on the reference element K .
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Square according to [Ainswo

inf-sup

14 16 18 20

L L L I
4 6 8 10 12

0-25
2
Polynomial degree k

FIG. 3. Inf-sup constants for the generalized Taylor—Hood elements Q; — Q1 and the new family Qy — Q;c—l
analysed in the text.

Salt Lake City, 25 Jun 2014 1
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o L = number of layers
N A (L=1,p=1) p = polynomial degree

s

Mesh 4: 4 layers of hanging nodes

Error squared (in H'x L)
3

&
3

1
I — 6
o (L=6,p=6) E
05 (L=7,p=7)
1077 L L L
0 5 10 15 20 25 30 35
0 1 2 3 Number of degrees of freedom N2
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Relation with the Cosserat eigenvalue problem

[Eugene & Francois Cosserat 1898]

Find u € H} () \ {0}, o € C such that
cAu—Vdivu=0.

Their aim: Solving the Lamé Dirichlet problem by eigenfunction expansion.

For o # 0, equivalent eigenvalue problem:

dvA~'Vg=0q inl3(Q). J
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Relation with the Cosserat eigenvalue problem

[Eugene & Francois Cosserat 1898]

Find u € H} () \ {0}, o € C such that
cAu—Vdivu=0.

Their aim: Solving the Lamé Dirichlet problem by eigenfunction expansion.

For o # 0, equivalent eigenvalue problem:

dvA~'Vg=0q inl3(Q). J

Definition: Cosserat operator | . = divA~'v Selfadjoint, positive, < 1.
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Relation with the Cosserat eigenvalue problem

[Eugene & Francois Cosserat 1898]

Find u € H} () \ {0}, o € C such that
cAu—Vdivu=0.

Their aim: Solving the Lamé Dirichlet problem by eigenfunction expansion.

For o # 0, equivalent eigenvalue problem:

dvA~'Vg=0q inl3(Q). J

Definition: Cosserat operator | . = divA~'v Selfadjoint, positive, < 1.

The Cosserat eigenvalue problem is a Stokes eigenvalue problem

Find u € H}(Q2), p € L2(Q)\ {0}, o € C:

—Au+Vp=0 in
divu=op in Q
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Relation with the Cosserat eigenvalue problem

This is not an elliptic eigenvalue problem! o = 1 has infinite multiplicity

q=0¢, 9 € H3(Q) = A 'Vg=V¢ = Sq=q.

Define ’ 6(92) = min( Spectrum .¥) ‘ J

Known results [Cosserats, Necas, Maz'ya—Mikhlin]

1
Ball in R¥: G(Q):a, GK:W"CFZ, k> 1

Bounded Lipschitz domains: ¢(2) > 0
o = 1is an isolated eigenvalue,
c= % is accumulation point of eigenvalues

Smooth domains (C® [Crouzeix 1997]):
o= % is the only accumulation point of eigenvalues
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Relation with the Cosserat eigenvalue problem

This is not an elliptic eigenvalue problem! o = 1 has infinite multiplicity

q=0¢, 9 € H3(Q) = A 'Vg=V¢ = Sq=q.

Define ’ 6 (2) = min( Spectrum .¥) ‘ J

Known results [Cosserats, Ne¢as, Maz'ya—Mikhlin]

) 1
Ballin RY: o(Q) = g Ok= WKCFZ’ k> 1
Bounded Lipschitz domains: ¢(2) > 0

o = 1is an isolated eigenvalue,

c= % is accumulation point of eigenvalues

Smooth domains (C® [Crouzeix 1997]):
o= % is the only accumulation point of eigenvalues

A simple relation

o(Q) = B(Q)*.
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Reformulation as Cosserat or Stokes eigenvalue problem

Advantages

@ Standard code available: Stokes + matrix eigenvalue problem
@ Eigenfunctions can be looked at
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Reformulation as Cosserat or Stokes eigenvalue problem

Advantages

@ Standard code available: Stokes + matrix eigenvalue problem
@ Eigenfunctions can be looked at

Disadvantage
There is no theory for the approximation of this eigenvalue problem.
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Reformulation as Cosserat or Stokes eigenvalue problem

Advantages

@ Standard code available: Stokes + matrix eigenvalue problem
@ Eigenfunctions can be looked at

Disadvantage
There is no theory for the approximation of this eigenvalue problem.

Stokes eigenvalue problem, first kind Stokes eigenvalue problem, second kind

Find u € H}(Q), p € L2(Q) \ {0}, Find u € H}(Q), p € L2(Q)\ {0},
ceC: ceC:
—Au+Vp=ocu in Q —Au+Vp=0 in Q
divu=0 in Q divu=op in Q
Known: Discrete LBB condition No convergence proof known.
guarantees spectral convergence. )
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Rectangle: First 2 Cosserat eigenfunctions

Rectangle, aspect ratio 0.4

Degrees: 6,3 Degrees: 15,12
GEEigVecZD.10833 GEElg\/’ecZD 108328
0.4 . ~ 2
0.2 1
0 o
-0.2 -1
-0.4 i -2
-1 -08 -06 -04 -02 0 0.2
GEEigVecS°.202677 GEEigvecd U.1 91014
0.4 04 2
g | -
0.2 0.2 1
o 0 1]
-0.2 -0.2 1
b
" = |, - N
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -0.5 a 05 1
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Rectangle: First eigenfunction

Rectangle, aspect ratio 0.1

GEEigvec2,.0314098

01 2
NIRE S -2
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Rectangle: First eigenfunction

Rectangle, aspect ratio 0.2

GEEigvec2 ;.109539
0.z

2
0 0

02 =
£ s D 05 1
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Rectangle: First eigenfunction

Rectangle, aspect ratio 0.4

GEEigvecz 108328
04

0.z

=

02
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Rectangle: First eigenfunction

Rectangle, aspect ratio 0.6

GEEigvec2 173789
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Rectangle: First eigenfunction

Rectangle, aspect ratio 0.8

GEEigvecZ 189876
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Rectangle: First eigenfunction

Rectangle, aspect ratio 1.0

1
.
n.e
0.6

04

0.2

-0.2
-04

-0.6

GEEigYec? | 180655

Martin Costabel (Rennes)

Computing the inf-sup constant

2.5
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First eigenfunction,

GEEig\"’eC2D.09551 14
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Square: Fourth eigenfunction, (Q7, Q1e)

GEEigYecs ;0956114 a
x11 a

ne

0.6

P, e RS TR i -
-2 -1 0 1 2
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Square: Fourth eigenfunction, (Q7, Q1e)
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k=8 and ¢ = 4. Strongly refined mesh

degu =8 & degp =4. Mesh = Ratio1024-lay5-dens1
0.25 T T T T T T T T T

T —————
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k=8 and ¢ = 5. Strongly refined mesh

degu =8 & degp =5. Mesh = Ratio1024-lay5-dens1
0.25 T T T T T T T T

R Y S —
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k=8 and ¢ = 6. Strongly refined mesh

degu =8 & degp =6. Mesh = Ratio1024-lay5-dens1
0.25 T T T T T T T T T

0.2 -

[ [ 7
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k=8 and ¢ =7. Strongly refined mesh

degu =8 &degp=7. Mesh = Ratio1024-lay5-dens1
0.25 T T T T T T T T T

0.2 1
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Again, for comparison: k =8 and ¢ = 4. Uniform grid

degu =8 & degp =4. Mesh =dens6

025 T

Martin Costabel (Rennes) Computing the inf-sup constant Salt Lake City, 25 Jun 2014 31/49



Again, for comparison: k =8 and ¢ = 4. Refin. mesh

degu =8 & degp =4. Mesh = Ratio1024-lay5-dens1

N i
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Again, for comparison: k =8 and ¢ = 7. Uniform grid

degu =8 &degp=7. Mesh =dens6
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Again, for comparison: k =8 and ¢ = 7. Refin. mesh

degu =8 &degp=7. Mesh = Ratio1024-lay5-dens1

0.2 : 1
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Corner singularities

For o ¢ {0,1.1}, the operator A; = —o A+ Vdiv is elliptic.

If Q C R? has a corner of opening w, one can therefore determine the
corner singularities via Kondrat’ev’s method of Mellin transformation:
Look for solutions of the form r*¢(8) in a sector. — g ~ r*~1¢(8)
Characteristic equation (Lamé system, known!) for a corner of opening w:

(%) (1-20) 7 tsinw.

Theorem [Kondrat'ev 1967]

For 0 €[0,1]\{0, 3,1}, As : H}(Q) — H () is Fredholm iff the equation
(*) has no solution on the line e A = 0.
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Corner singularities

For o ¢ {0,1.1}, the operator A; = —o A+ Vdiv is elliptic.

If Q C R? has a corner of opening w, one can therefore determine the
corner singularities via Kondrat’ev’s method of Mellin transformation:
Look for solutions of the form r*¢(8) in a sector. — g ~ r*~1¢(8)
Characteristic equation (Lamé system, known!) for a corner of opening w:

(%) (1-20) 7 tsinw.

Theorem [Kondrat'ev 1967]

For 0 €[0,1]\{0, 3,1}, As : H}(Q) — H () is Fredholm iff the equation
(*) has no solution on the line e A = 0.

With z = A w, we rewrite (x):

Result :
@ () has roots on the line Re A = 0 iff [1 —20|w < |sinw|
@ If |1 —20|w > |sin®|, there is a real root A € (0,1)
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Essential spectrum: Corners

Theorem [Crouzeix, Costabel-Dauge]

Q c R? piecewise smooth with corners of opening ;.
sin o) |sina,
SPess(#) = U [5—oll, 5+ 1520 U (1)

corners j
1 jll Example : Rectangle, » = 3
09
08 Spess(y‘M):[%_%vé"'%]
0.7
~[0.181,0.818]
0.6 4
005

0.4 Corollary

08 For square, rectangles,
02 rectangular cylinders in 3D:
0.1
‘ ‘ ; ; 0)2<l_1
% 0.5 1 1.5 2 B ( ) -2 =

o en nrd

Figure: Essential spectrum: ¢ vs. opening ®
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Exponent of singularity vs Cosserat eigenvalue (Rectangle: green line)

0.8 N

0.6 , : 1

<0.5- b

0.3+ i
— w=31/4

0.2+ — =12 \
— w=n/4
— w=n/8

0O 0.05 0.1 0.15 0.2 0.25 0.3 0.35
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Computations on Cupid’s Bow, and H-P inequality

Cupids Bows, c=0.5

s —— r=exp(-ch)

Logarithmic spirals: r = e 9,0 < 9 < 7 + symmetries
Horgan-Payne angle: Minimal angle between radius vector and tangent
() = arctan

Horgan-Payne inequality: | B(€2) > sin “’(Q)

2
2 cc+1—-c 1 o -
B(Q)* > —=— o1 TCZ+O( ) asc—re.
Upper bound [Costabel-Dauge 2013]
128 —on
B(Q)? < = % ( 128 — 7 [Co-Da-Crouzeix])
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Cupid’s Bow

inf-sup constant of Cupid”s Bow
T T

T

upper bound (proved)
lower bound (H-P)

1

-2

log10(8?)

4}

-6 il il il il il
0 0.5 1 1.5 2 2.5 3
parameter ¢
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Cupid’s Bow

inf-sup constant of Cupid”s Bow
T T T

T
upper bound (proved)
lower bound (H-P)
upper bound (optimal)
lower bound (CD)
0 inf ess. spectrum

log10(8%)
o

-3

-4

-5

6 I I I I I
0 0.5 1 1.5 2 25 3
parameter ¢
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Cupid’s Bow

inf-sup constant of Cupid”s Bow

log10(8%)
o

-3

-4

-5

-6

T
upper bound (proved)
lower bound (HP)
upper bound (optimal) [
lower bound (CD)
inf ess. spectrum
computed i

1 1

Martin Costabel (Rennes)

0.5

1.5 2
parameter ¢

Computing the inf-sup constant

25 3
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Thank you for your attention!

Thanks also to the sponsors of ICOSAHOM 2014:
NSF, ONR, AFOSR, ARO
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Lions’ lemma

Lemma [Lions 1958, unpublished*, for smooth domains] [Ne¢as 1967 for Lipschitz domains]

2 2
lal’ < c@val®,  vgel2(@)

* According to [E. Magenes and G. Stampacchia 1958].
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Lions’ lemma

Lemma [Lions 1958, unpublished*, for smooth domains] [Ne¢as 1967 for Lipschitz domains]

2 2
lql? < c@)|val®,  vqe 3@

H~1() dual space of Hj () with dual norm || __:
For g € L2(Q):

(Vag,v), < Jodivvg

Vgl _,= sup ——=
verd@ vl very@d IVl g
IVl
B(Q) = inf —

se2@ llall,
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Lions’ Lemma and Right Inverse of the Divergence

Lions’ Lemma <=V : [2(Q) — H~'(Q)% is injective with closed range
<= div : HI(Q)? — L3(Q) is surjective

Babuska-Aziz inequality [Babuska-Aziz 1971], named by [Horgan-Payne 1983]
Q Lipschitz, g € L2(Q) == 3JveH{(Q):divv=q

2 2
vi® < c@llqll2
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<= div : HI(Q)? — L3(Q) is surjective

Babuska-Aziz inequality [Babuska-Aziz 1971], named by [Horgan-Payne 1983]
Q Lipschitz, g € L2(Q) == 3JveH{(Q):divv=q

2 2
vi® < c@llqll2

| A

Equivalence for domain Q:

B(2) > 0 <= Lions’ lemma <= Babuska-Aziz inequality

This condition (and its discrete counterpart) is called inf-sup condition or LBB
condition, after

@ Ladyzhenskaya Added by J. T. Oden ca 1980, on suggestion by J.-L. Lions

@ Babuska [Babugka 1971-73]

@ Brezzi [Brezzi 1974]
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Starshaped domains

Theorem [Bogovskii 1979], [Galdi 1994]

Let Q C R" be contained in a ball of radius R, starshaped with respect to a
concentric ball of radius p. There exists a constant 4 only depending on
the dimension d such that

B> (2)"

Salt Lake City, 25 Jun 2014 42/49
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Starshaped domains

Theorem [Bogovskii 1979], [Galdi 1994]

Let Q C R" be contained in a ball of radius R, starshaped with respect to a
concentric ball of radius p. There exists a constant 4 only depending on
the dimension d such that

)d+1

B@) =7 (

By S)

In dimension d = 2, we can prove

P
B(2) > Y]

| A\

A\

M. CoSsTABEL, M.DAUGE: On the inequalities of Babuska-Aziz, Friedrichs and
Horgan-Payne. arXiv 2013.
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Theorem [Acosta-Duran-Muschietti 2006], [Duran 2012]

Let Q c RY be a bounded John domain. Then 3(Q) > 0.
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Theorem [Acosta-Duran-Muschietti 2006], [Duran 2012]

Let Q c RY be a bounded John domain. Then 3(Q) > 0.

Figure: Not a John domain: Outward cusp, 3(£2) = 0 [Friedrichs 1937]
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Definition of John Domain

Definition

A domain Q C R with a distinguished point xg is called a John domain if it
satisfies the following “twisted cone” condition:

There exists a constant § > 0 such that, for any y in Q, there is a rectifiable
curve v: [0,¢] — Q parametrized by arclength such that

Y(0)=y, y(¢)=x0, and Vte[0,£]: dist(y(t),dQ)>4t.

Here dist(y(t),d2) denotes the distance of ¥(t) to the boundary 9S2.
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Martin Costabel (Rennes) Computing the inf-sup constant



Definition of John Domain

Definition

A domain Q C R with a distinguished point xg is called a John domain if it
satisfies the following “twisted cone” condition:

There exists a constant § > 0 such that, for any y in Q, there is a rectifiable
curve v: [0,¢] — Q parametrized by arclength such that

Y(0)=y, y(¢)=x0, and Vte[0,£]: dist(y(t),dQ)>4t.

Here dist(y(t),d2) denotes the distance of ¥(t) to the boundary 9S2.

Example : Every weakly Lipschitz domain is a John domain.
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hn domain: Union of Lipschitz domains
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A John domain: Zigzag

Figure: A weakly Lipschitz domain: the self-similar zigzag
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John domains: Spirals

Figure: Weakly Lipschitz (left), John domain (right)
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Fractal John domains: Tree or Lung

Figure: A John domain: the infinite tree
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—A: H} () — H'(Q) is the Riesz isometry.
Let g € L2(Q).
(89.q) = (divA~'Vq,q)
=(-A""Vq,Vq)

veHj(@)9 |V

o(Q) = inf (S9.9)
getz@) (9.9)
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