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Abstract

We derive and analyze two equivalent integral formulations for the time-harmonic electromag-
netic scattering by a dielectric object. One is a volume integral equation (VIE) with a strongly
singular kernel and the other one is a coupled surface-volume system of integral equations with
weakly singular kernels. The analysis of the coupled system is based on standard Fredholm
integral equations, and it is used to derive properties of the volume integral equation.
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1. Introduction

We consider the solution via the integral equation method of the problem of electro-
magnetic scattering by a dielectric body. The scientific literature is abundant on the
theoretical and numerical analysis of surface integral equations related to scattering
problems. Conversely, the volume integral equation (VIE) using the strongly singular
fundamental solution of Maxwell’s equations has been the subject of only a few studies;
see for example [1], [2] and [8], where the VIE is numerically solved with the method
of moments. In [4], the VIE is combined with a multilevel fast multipole algorithm, to
analyze antenna radiation in the presence of dielectric radomes. The spectrum of the
volume integral operator is numerically studied in [3] and [12]. In [3] a spectral analysis
is given under the hypothesis of Hölder continuity of constitutive parameters in the whole
space. Likewise, the Lippmann-Schwinger equation studied in [5], which corresponds in
the Maxwell case to our VIE, is analyzed there for a scattering problem in a medium
with a refractive index uniformly Hölder continuously differentiable in the whole space
R3.
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The assumption of global continuity is not realistic in the situation of the scattering
by a dielectric, where the permittivity typically is discontinuous on the surface of the
scatterer. Of practical importance are also composite dielectric materials with several
surfaces of discontinuity. On the other hand, the magnetic permeability is often constant
in this situation. Our contribution is the rigorous mathematical derivation of the VIE
under the realistic hypothesis of discontinuity of the electric permittivity across the
dielectric boundary. Moreover, we establish mapping properties and well-posedness of
the VIE in standard function spaces associated with the electromagnetic energy, and we
give first results about the essential spectrum of the volume integral operator in the space
L2(Ω), and in particular a G̊arding inequality which is of importance for the stability of
numerical algorithms based on the Galerkin method.

The VIE is also introduced in [1], for the scattering by a dielectric with discontinuities
in the electric permittivity and the magnetic permeability of the medium. Such a volume
integral equation is also used in [7] for the analysis of the far-field operator in dielectric
scattering. In that paper, the integral equation is studied inH(curl,Ω), and conditions for
the material coefficients are given under which existence and uniqueness can be shown.

Our analysis of the VIE uses the equivalence with a coupled surface-volume system
of integral equations which has only weakly singular kernels and is therefore easier to
analyze. When the permittivity is continuous across the boundary, the boundary part
of this coupled system disappears and one is left with the weakly singular form of the
Lippmann-Schwinger equation that has already been investigated in [5]. The original
scattering problem is equivalent to both integral formulations, and all three problems
are well posed under realistic assumptions on the coefficients. While it is easy to see
that the strongly singular volume integral operator has a non-trivial essential spectrum,
a more complete study of its spectral properties is still to be done.

The needed technical tools are all available in standard references, such as the Stratton-
Chu integral representation theorem in [5], the basic properties of the Sobolev spaces
associated with the electromagnetic energy in [6], trace theorems and mapping properties
of singular integral operators between Sobolev spaces in [10]. We also use the unique
continuation principle from [9] or [11].

2. The problem

Let Ω− be a bounded domain in R3 representing the dielectric scatterer. We use the
notation Ω+ = R3 \Ω− and Γ = ∂Ω−, and we assume that the boundary Γ is regular (at
least C2). n is the unit outward normal vector to Ω−.

The electric permittivity ε is a function of the space variable satisfying ε(x) > 0, x ∈
R3; ε|Ω− ∈ C

1(Ω−)∩C0(Ω−); ε|Ω+ = ε0; and ε is discontinuous across Γ, in general. The
vacuum permittivity ε0 is a positive constant. We will denote the relative permittivity
by εr =

ε

ε0
. We will also use the notation η = 1−εr. The electric conductivity σ vanishes

everywhere. We assume for simplicity that the magnetic permeability µ is constant (µ ≡
µ0 > 0). With the frequency ω, the wave number is κ = ω

√
ε0µ0 > 0 .

We use the function spaces:
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H(curl,Ω−) = {u ∈ L2(Ω−)3;∇×u ∈ L2(Ω−)3},

H(curl,div,Ω−) = H(curl,Ω−) ∩H(div,Ω−),

Hloc(curl, (Ω+)) = {u ∈ L2
loc(Ω+)3;∇× u ∈ L2

loc(Ω+)3},

Hloc(curl,div, (Ω+)) = Hloc(curl, (Ω+)) ∩Hloc(div, (Ω+)).

H(div,Ω−) and H(div,Ω+) (respectively Hloc(div, (Ω+))) are defined in the same way
as H(curl,Ω−) (respectively Hloc(curl, (Ω+)) ), with ∇× u replaced by ∇ · u.
As abbreviations for the restrictions onto the boundary Γ we write for the trace and the
normal derivative of a scalar function u

γ0u = u|Γ and γ1u = n · ∇u|Γ ,

and for the normal and tangential traces of a vector function u

γnu = n · u|Γ and γ×u = n× u|Γ .

Let F ∈ H(div, Ω+) be a vector field with a compact support contained in Ω+,
representing a current density that serves as source for the incident field scattered by the
dielectric body Ω−.

The scattering problem (P) we want to solve can be written as follows:

Find E, H such that Ei ∈ H(curl,div,Ω−),Ee ∈ Hloc(curl,div,Ω+),
Hi ∈ H(curl,Ω−),He ∈ Hloc(curl,Ω+), with Ei = E|Ω− ,Hi = H |Ω− ,
Ee = E|Ω+ and He = H |Ω+ , satisfying the equations

(P)



∇×Ei − iκHi = 0 and ∇×Hi + iκεr Ei = 0 in Ω−,

∇×Ee − iκHe = 0 and ∇×He + iκEe = F in Ω+,

n×He = n×Hi and n ·He = n ·Hi on Γ,

n×Ee = n×Ei and n ·Ee = n · εr Ei on Γ,

He ×
x

r
−Ee = O

(
1
r2

)
, r = |x| → +∞.

Note that the interface conditions simply express the fact that ∇×E, ∇×H, ∇ ·H
and ∇· (εE) are locally integrable, that is that the time-harmonic Maxwell equations are
satisfied in the distributional sense in the whole space. The interface conditions on the
normal components are a consequence of the conditions on the tangential components
and of the Maxwell equations in Ω−∪Ω+, and therefore the interface problem (P) is often
equivalently formulated without the interface conditions on the normal components.

The physical situation described by problem (P) is the electromagnetic field radiated
by an antenna and refracted by a dielectric lens. A slightly different scattering problem is
often considered in the literature where the incident field is given, for example as a plane
wave, and only the scattered field is considered in Ω+. This leads to a mathematically
equivalent formulation where the differential equations are homogeneous (F = 0) and
the transmission conditions are inhomogeneous.
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3. Integral formulations

As a first step in the derivation of the integral equations, we extend the well-known
Stratton-Chu integral representation to fields (E,H) in H(curl,div,Ω−)×H(curl,Ω−).

Lemma 1 (Stratton-Chu) Let D be a C2 regular bounded domain in R3, n the unit
outward normal to ∂D, E and H two vector fields in C1(D). Then for all x ∈ D there
holds

E(x) =−∇×
∫

∂D

n(y)×E(y)Gκ(x− y)ds(y) +∇
∫

∂D

n(y) ·E(y)Gκ(x− y)ds(y)

−iκ
∫

∂D

n(y)×H(y)Gκ(x− y)ds(y)+iκ
∫

D

{∇×H(y)+iκE(y)}Gκ(x− y)dy

−∇
∫

D

∇·E(y)Gκ(x− y)dy +∇×
∫

D

{∇×E(y)− iκH(y)}Gκ(x− y)dy (1)

with Gκ(x− y) =
eiκ|x−y|

4π|x− y|
, the fundamental solution of the Helmholtz equation.

This representation holds also for (E,H) in H(curl,div, D) × H(curl, D), where the
boundary values are understood in the sense of weak tangential and normal traces in
H−1/2(Γ).

For a proof of the regular case, see [5], page 156.
In order to see that the formula (1) is also valid for (E,H) ∈ H(curl,div, D) ×

H(curl, D), we use the density of smooth functions in these spaces [6] and the conti-
nuity of the integral operators:

Let us introduce the integral operators of the volume potential N and the single layer
potential S, both acting on scalar functions as well as on vector fields:

Nu(x) =
∫

D

u(y)Gκ(x− y) dy ; Sf(x) =
∫

∂D

f(y)Gκ(x− y) ds(y).

With the normal and tangential traces on ∂D, γnu = n · u|∂D
and γ×u = n× u|∂D

. we
can then write the relation (1) in the form

K(E,H) = 0 ∀ E,H ∈
(
C1(D)

)3 (2)

where we set
K(E,H) = E +∇×(Sγ×E)−∇SγnE + iκSγ×H

−∇×N (∇×E − iκH) +∇N (∇ ·E)− iκN (∇×H + iκE).

Since the operators

S : H− 1
2 (∂D) −→ H1(D) and N : L2(D) −→ H2(D)

are continuous, we can extend (2) by density from (C1(D))6 and obtain

K(E,H) = 0 ∀ (E,H) ∈ H(curl, div, D)×H(curl, D) . �

Using this extended Stratton-Chu formula for D = Ω− and for D = Ω+ ∩ BR, where
the radius R of the ball BR tends to infinity, together with the Maxwell equations of the
problem (P) and the radiation condition, we establish the following lemma:
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Lemma 2 Let E and H be two vector fields on R3 satisfying the hypotheses and equa-
tions of problem (P) except for the interface conditions, and for x ∈ R3, let

U i(x) =−∇× S(γ×Ei)(x) +∇S(γnEi)(x)− iκS(γ×Hi)(x)

−∇N (∇ ·Ei)(x)− κ2N (ηEi)(x)

and

U e(x) =∇× S(γ×Ee)(x)−∇S(γnEe)(x) + iκS(γ×He)(x) + D(x) ,

where

D(x) = − 1
iκ
∇

∫
Ω+

∇· F (y)Gκ(x− y) dy + iκ

∫
Ω+

Gκ(x− y)F (y) dy .

Then we have

U i =

{
Ei in Ω−

0 in Ω+ and U e =

{
0 in Ω−

Ee in Ω+ .

Proposition 3 Let (E,H) be solution of Problem (P). Then we have the following two
integral representations for E in R3:

E = ∇S(η γnEi)−∇N (∇ ·Ei)− κ2N (ηEi) + D (3)

and
E = ∇M(ηEi)− κ2N (ηEi) + D (4)

Here, as in the previous lemma, the Newton potential N is defined with respect to inte-
gration over the interior domain Ω−, and the operator M is given by

Mu(x) =
∫

Ω−
∇y Gκ(x− y) · u(y) dy .

Proof: From the previous lemma, we have in all of R3:

E = U i + U e

=∇× S(γ×(Ee −Ei))−∇S(γn(Ee −Ei)) + iκS(γ×(He −Hi))

−∇N (∇ ·Ei)− κ2N (ηEi) + D

Taking account of the boundary conditions:

γ×(Ee −Ei) = 0 = γ×(He −Hi) and γn(Ee −Ei) = (εr − 1)γnEi on Γ,

we arrive at the first integral representation (3).
Furthermore, an integration by parts gives

S(ηn·Ei)(x) =
∫

Γ

(1− εr(y))Gκ(x− y) n(y) ·Ei(y) ds(y)

=
∫

Ω−
Gκ(x− y)∇·Ei(y) dy −

∫
Ω−
Gκ(x− y)∇·(εr(y)Ei(y)) dy

+
∫

Ω−
(1− εr(y))∇yGκ(x− y) ·Ei(y) dy.
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Hence, using ∇·(εrEi) = 0 we obtain

S(η γnEi)−N (∇·Ei) = M(ηEi) . (5)

Injecting this equality into (3), we get the representation (4). �

From this proposition we will derive two integral equations, a coupled surface-volume
system and a volume equation.

Recall first that from the equations of the problem (P), we get ∇·(εrEi) = 0 in the

sense of distributions on R3, hence in Ω− there holds ∇·Ei = − 1
εr
∇εr ·Ei , and therefore

∇·Ei can be replaced by − 1
εr
∇ εr ·Ei in the above integral representation (3). Let us

denote by τ this logarithmic gradient of εr : τ = − 1
εr
∇εr .

The following integral operators appear in addition to the operator Mη : u 7→ M(ηu):

Sη : f 7→ S(η f); Nτ : u 7→ N (τ · u); Nη : u 7→ N (ηu) . (6)

where f and u are respectively scalar and vector fields defined on Γ and on Ω−.
We also need the one-sided traces

γ±0 g := g±|Γ , γ±1 g := (n · ∇g±)|Γ and γ±n v := γnv±,

for g and v respectively scalar and vector fields defined on R3, with g± := g|Ω± and
v± := v|Ω± .
The coupled surface-volume system of integral equations is given by the problem (E1)
defined as follows:

(E1)


Find (E∗, e∗) ∈ (L2(Ω−))3 ×H− 1

2 (Γ), such that1−∇Nτ + κ2Nη −∇Sη

κ2γ−n Nη − γ−1 Nτ 1− γ−1 Sη

 E∗

e∗

 =

 D

γ−n D


and the VIE is given by the problem (E2) defined as follows:

(E2)


Find E◦ ∈ (L2(Ω−))3, such that(
1−∇Mη + κ2Nη

)
E◦ = D .

Remark 4 A quicker, if less rigorous, way of arriving at the second integral represen-
tation (4) and from there by restriction to Ω− at the VIE (E2), is the following:
Write the Maxwell transmission problem (P) as a second order system, valid in the dis-
tributional sense on the whole space, and move the inhomogeneity to the right hand
side:

∇× (∇×E)− κ2E = −κ2ηE + iκF .
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Then solve this system by convolution with the (strongly singular) fundamental solution
U∗ of the constant-coefficient operator ∇× (∇×)− κ2:

U∗(x) =
1
κ2
∇∇Gκ(x) +Gκ(x) .

This gives
E = −κ2U∗ ∗ (ηE) + iκU∗ ∗ F

which, by noticing that η vanishes outside of Ω−, can be seen to coincide with the
representation formula (4).

4. Equivalence results and well-posedness

We prove equivalence between the scattering problem and the integral formulations,
via the following theorems.

Theorem 5 If (E,H) is a solution of the problem (P), then (Ei, γnEi) is a solution
of the problem (E1).

Proof: This is a direct consequence of the previous proposition. Indeed, applying the
formula (3) to the restriction Ei = E|Ω− , and remembering that ∇·Ei = −τ ·Ei, we get
the first equation of the problem (E1). The second one is obtained by taking the normal
trace of the first equation on the boundary. So the couple (Ei, γnEi) is a solution of (E1),
because it belongs to (L2(Ω−))3 ×H− 1

2 (Γ). �

Conversely, we have:

Theorem 6 If (E∗, e∗) ∈(L2(Ω−))3 ×H− 1
2 (Γ) is a solution of the problem (E1), then

we have a solution (E,H) of the problem (P) by defining:

E|Ω− = E∗,

E|Ω+ (x) = ∇S(η e∗)(x)−∇N (∇ ·E∗)(x)− κ2N (ηE∗)(x) + D(x) ,

H |Ω− =
1
iκ
∇×E∗ and H |Ω+ =

1
iκ
∇×E|Ω+ .

Proof: From the definition of the fields E and H and the continuity properties of the
corresponding integral operators it is clear that the fields belong to the function spaces
required for solutions of the problem (P). The Silver-Müller radiation condition is a
consequence of the asymptotic behavior of the integral kernels at infinity.
We now check that the Maxwell equations are satisfied. The equations ∇×E∗−iκH |Ω− =
0 and ∇×E|Ω+ − iκH |Ω+ = 0 are satisfied by definition. Furthermore, we have ∇×
H |Ω− + iκεr E|Ω− = 1

iκ ∇×(∇×E∗) + iκεr E∗. Using integration by parts, the relation

∇×(∇×) = −∆ +∇(∇·) and the equality
∫

Ω+
∇y ·(Gκ(x− y)F (y)) dy = 0 which is valid

because SuppF ⊂ Ω+, we get from (E1)

(∇×H |Ω−+ iκεr E|Ω− )(x) = iκ∇
∫

Ω−
(1− εr(y))Gκ(x− y)q(y)dy (7)
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with q =
1
εr
∇·(εrE∗). We have to show that q = 0.

Taking the divergence in (7), we see that q is a solution u of the scalar Lippmann-
Schwinger equation:  Find u ∈ L2(Ω−), such that

(1 + κ2Nη)u = 0 in Ω−
(8)

Lemma 7 The trivial solution is the unique solution of the problem (8).

Proof of the Lemma: From u = −κ2Nηu we find u ∈ H2(Ω−), since N is bounded
from L2(Ω−) to H2(Ω−). We can define an extension of u to all of R3 by

v(x) := −κ2

∫
Ω−

η(y))Gκ(x− y)u(y) dy. Since v ∈ H2
loc(R3), we have

[γ0v]Γ := γ+
0 (v)− γ−0 (v) = 0, and [γ1v]Γ := γ+

1 (v)− γ−1 (v) = 0.

Thus v is solution of the problem:
v ∈ H2

loc(R3)

(∆ + κ2εr)v = 0 in R3 ; ∂rv − iκv = O
(

1
r2

)
, r → +∞

The Sommerfeld radiation condition and the Rellich lemma show that v vanishes outside
Ω−. Then using the unique continuation principle ([9], page 65) in a domain strictly con-
taining Ω−, we get that v vanishes everywhere. and in particular u = 0. This completes
the proof of the Lemma. �

Coming back to (7) and using q = 0, we get ∇×H |Ω−+ iκεr E|Ω− = 0.
Moreover, we have

∇×H |Ω+ + iκE|Ω+ =
1
iκ
∇×(∇×E|Ω+ ) + iκE|Ω+ .

Noticing that q = 0 implies ∇·E∗ = − 1
εr
∇εr ·E∗, integrating by parts in∫

Ω−
∇y·[(1− εr(y))Gκ(x− y)E∗(y)] dy and using the relation 1

iκ∇×(∇×D)+iκD = F ,

we get ∇×H |Ω++ iκE|Ω+ = F . So the Maxwell equations are satisfied.
Let us now verify the interface conditions. Consider a ball
BR = {x ∈ R3; |x| < R} with R > 0 such that Ω− ⊂ BR. We note B+

R = BR \ Ω−. For
φ ∈ C∞0 (BR)3 we have

〈γ×E|Ω+− γ×E|Ω− , φ〉Γ =
∫

B+
R

(E|Ω+ ·∇×φ−∇×E|Ω+ · φ) +
∫

Ω−
(E∗ ·∇×φ−∇×E∗ · φ).

Inserting the definition of E|Ω+ into this expression involves the following functions:

a = S(ηe∗), b = N (∇·E∗), c = N (ηE∗),

d(x) :=
∫

Ω+
Gκ(x− y)F (y) dy, l(x) :=

∫
Ω+

∇·F (y)Gκ(x− y) dy.

We have a ∈ H1(BR). The functions b, l on one hand and c, d on the other hand,
are respectively in H2(BR) and in H2(BR)3, so their jumps at the boundary Γ vanish.
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Therefore 〈γ×E|Ω+− γ×E|Ω− , φ〉Γ = 0, ∀φ ∈ C∞0 (BR)3 , hence γ×E|Ω+ = γ×E|Ω− in
H− 1

2 (Γ)3. The functions a, b, c, d and l appear also in the expressions of
〈γ×H |Ω+− γ×H |Ω− , φ〉Γ and 〈γnE|Ω+− γnE|Ω− , ψ〉Γ. With the same arguments we get
〈γ×H |Ω+− γ×H |Ω− , φ〉Γ = 0, ∀φ ∈ C∞0 (BR)3 and 〈γnH |Ω+− γnH |Ω− , ψ〉Γ = 0, ∀ψ ∈
C∞0 (BR), hence γ×H |Ω+ = γ×H |Ω− and γnH |Ω+ = γnH |Ω− in the sense ofH− 1

2 (Γ). The
functions a, b, c,d and l are again involved in the expression of the normal components
of the field E. Since b, l ∈ H2(BR) and c,d ∈ H2(BR)3, we have [γ1b]Γ = [γ1l]Γ =
[γnc]Γ = [γnd]Γ = 0. On the other hand, we find [γ1a]Γ = −η e∗. Thus,

〈γnE|Ω+− γnεrE|Ω− , ψ〉Γ =
∫

Γ

η(x))ψ(x)
[
− e∗(x) + γ−1 a(x)− γ−1 b(x)

−κ2γ−n c(x) + iκ γ−n d(x)− 1
iκ
γ−1 l(x)

]
ds(x).

From the expression of e∗, we have

−e∗ + γ−1 a− γ−1 b− κ2γ−n c + iκ γ−n d− 1
iκ
γ−1 l = 0.

So 〈γnE|Ω+−γnεrE|Ω− , ψ〉Γ = 0, ∀ψ ∈ C∞0 (BR), hence γnE|Ω+= γnεrE|Ω− inH− 1
2 (Γ)).

Thereby, the interface conditions are satisfied too. This completes the proof of the theo-
rem. �

In Theorems 5 and 6 we showed equivalence between the scattering problem (P) and
the first integral formulation (E1). In this context, the right hand side had a particular
form coming from our assumption that the sources are situated in the exterior domain.
Therefore the right hand side D in the integral equation was the field generated by
such a source, and was therefore analytic on the whole domain Ω−. In order to study
mapping properties of the integral operators, in particular the strongly singular operator
appearing in the VIE (E2), we need to consider now more general right hand sides D.
The following equivalence theorem between the two integral formulations (E1) and (E2)
holds in such a more general situation.

Theorem 8 Let D ∈ H(div,Ω−), ∇ ·D = 0.
(i) If (E∗, e∗) ∈ L2(Ω−)3 × H− 1

2 (Γ) is a solution of the problem (E1), then E∗ is a
solution of the problem (E2).
(ii) If E◦ ∈ L2(Ω−)3 is a solution of the probem (E2), then E◦ ∈ H(div,Ω−) and defining
e◦ = γnE◦ ∈ H− 1

2 (Γ), the pair (E◦, e◦) is a solution of the probem (E1) .

Proof:
(i) Let (E∗, e∗) be a solution of the problem (E1), then

E∗ = ∇N (τ ·E∗) +∇S(ηe∗)− κ2N (ηE∗) + D.

It is easy to see that E∗ ∈ H(div,Ω−). From the second equation of the system (E1), we
see e∗ = γnE∗ . As in the proof of Theorem 6, we conclude that ∇·E∗ = −τ ·E∗, hence
∇·(εrE∗) = 0, and we can integrate by parts as in (5) to get

∇N (τ ·E∗) +∇S(ηγnE∗) = ∇M(ηE∗),

hence
E∗ = ∇M(ηE∗)− κ2N (ηE∗) + D.
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Thus E∗ is a solution of the problem (E2).

(ii) Reciprocally, let E◦ be a solution of the problem (E2). We are first going to show
that E◦ ∈ H(div,Ω−).
We write E◦ = AE◦+D, with A = ∇Mη−κ2Nη. Since M is bounded from L2(Ω−)3

to H1(Ω−) and N is bounded from L2(Ω−)3 to H2(Ω−)3, it is clear that A is bounded
from L2(Ω−)3 to itself.

For u ∈ C∞0 (Ω−)3, a simple computation gives ∇·Au = ∇·(ηu); setting therefore
Cu = ∇· (Au− ηu), we have

Cu = 0 , ∀ u ∈ C∞0 (Ω−)3 . (9)

The operator C is bounded from L2(Ω−)3 to H−1(Ω−). Thus, from the density of
C∞0 (Ω−) in L2(Ω−)), we deduce that Cu = 0 holds for all u ∈ L2(Ω−)3. Therefore, we
get for the solution E◦ of (E2),

∇·E◦ = ∇·AE◦ +∇·D = ∇·(ηE◦) +∇·D ,

hence ∇·(εrE◦) = ∇·D = 0, and finally ∇·E◦ = −τ ·E◦ ∈ L2(Ω−). Let us check now
that the couple (E◦, γnE◦) satisfies the equations of (E1). We have

E◦ = ∇ME◦ − κ2NE◦ + D.

Since we know now that E◦ ∈ H(div,Ω−), we can use integration by parts and go back
to ∇ME◦ = ∇QE◦ +∇L(γnE◦). Thus we have the first equation of (E1),

E◦ = ∇QE◦ +∇L(γnE◦)− κ2NE◦ + D,

and we obtain the second one by taking the normal trace on Γ. �

Remark 9 We can use the same proof also in the case where D ∈ H(div,Ω−) is
arbitrary, not necessarily divergence free. We then have to modify the right hand side of
(E1) by replacing D with the function

D̃ = D −∇N ( 1
εr
η∇·D).

With this right hand side, (E1) turns out to be equivalent to (E2) (with right hand side
D). We then find ∇ · (εrE) = ∇ ·D in Ω−. This relation is an immediate consequence
of (E2), but in order to deduce it from (E1), we now have to see that the function q̃ =
1
εr

(∇·(εrE)−D) satisfies the homogeneous scalar Lippmann-Schwinger equation (8).

Having shown that the problems (P), (E1) and (E2) are all equivalent, we look now
at the mapping properties of the integral operators. Their well-posedness will imply the
one for the transmission problem, which is of course already well known [5]. A more
important motivation for the analysis of the integral operators in (E1) and (E2) is the
question of their suitability for numerical computations. The easier one is (E1), because
it involves only weakly singular integral operators whose mapping properties are well
known:

Proposition 10 Let the coefficient εr be in C1(Ω−) with εr(x) 6= 0 in Ω− and

εr(x) 6= −1 on Γ . (10)
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Then the matrix operator of the problem (E1)

A =

1−∇Nτ + κ2Nη −∇Sη

κ2γ−n Nη − γ−1 Nτ 1− γ−1 Sη


from L2(Ω−)3 ×H− 1

2 (Γ) to L2(Ω−)3 ×H− 1
2 (Γ) is Fredholm of index zero. If there is a

point on Γ where (10) is not satisfied, then it is not Fredholm.

Proof: The operators N : L2(Ω−) → H2(Ω−) and S : H− 1
2 (Γ) → H1(Ω−) are bounded.

So −∇Nτ + κ2Nη is compact from L2(Ω−)3 to itself, κ2γ−n Nη − γ−1 Nτ is compact from
L2(Ω−)3 to H− 1

2 (Γ) and ∇Sη is bounded from H− 1
2 (Γ) to L2(Ω−)3. For the operator

γ−1 Sη we use the jump relations and obtain for x ∈ Γ:

γ−1 Sηf(x) =
∫

Γ

η(y)∂nxGκ(x− y)f(y) ds(y) +
1
2
η(x)f(x).

Thus (1 − γ−1 Sη)f = 1
2 (1 + εr)f − T (ηf), where on our smooth boundary the operator

T is bounded from H− 1
2 (Γ) to H

1
2 (Γ), so it is compact from H− 1

2 (Γ) to itself. With
α = 1

2 (1 + εr), the matrix A can therefore be written in the following form:

A =

1 B

0 α1

 +

K1 0

K3 K2

 ,

where K1,K2 and K3 are compact operators and B is bounded. We see that if (10) is
satisfied, then A is the sum of an invertible and a compact operator, hence Fredholm of
index zero; and if α(x) = 0 for some x ∈ Γ, then A is not Fredholm. �

As a consequence of the equivalence theorems, Proposition 10 and the known unique-
ness of the scattering problem, we obtain the following corollary:

Theorem 11 Under the assumptions of problem (P), the VIE (E2) has a unique solution
depending continuously on the data.

More general questions of mapping properties of the strongly singular integral operator
of the VIE (E2) in L2 or in H(div), in particular its spectral theory, remain largely open.
We have the following partial result:

Proposition 12 Let εr ∈ C1(Ω−) and η = 1− εr.
(i) The operator

A : E 7→ ∇M(ηE)− κ2N (ηE)
is bounded from L2(Ω−)3 to L2(Ω−)3 and from H(div,Ω−) to H(div,Ω−).
(ii) If E ∈ L2(Ω−)3 is solution of

(1−A)E = D

with D ∈ H(div,Ω−), then E ∈ H(div,Ω−).
(iii) If εr(x) 6= 0 in Ω− and εr(x) 6= −1 on Γ, then the nullspace of the operator 1 − A
in L2(Ω−)3 is finite dimensional, and the codimension of the closure in L2(Ω−)3 of the
image of H(div,Ω−) is finite.
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(iv) If εr(x) ≥ ε1 for all x ∈ Ω−, where ε1 is a positive constant, then the operator 1−A
is a Fredholm operator of index zero in L2(Ω−)3, and it is strongly elliptic: There is a
compact operator K0 and c > 0 such that for all E ∈ L2(Ω−)3∫

Ω−
E(x) · (1−A)E(x) dx ≥ c ‖E‖2L2(Ω−) − ‖K0E‖2L2(Ω−) . (11)

Proof: The assertions (i)–(iii) have been shown above. We only need to show the
G̊arding inequality (11). It is clear that up to a compact perturbation, the operator A
coincides with (1− εr)P, where the operator P is defined with the fundamental solution
of the Laplace operator:

PE(x) = ∇
∫

Ω−
∇yG0(x− y) ·E(y) dy ; G0(x− y) =

1
4π|x− y|

.

The quadratic form (E,PE) =
∫

Ω−
E(x) · PE(x) dx is the restriction to Ω− of the

corresponding quadratic form on R3. On R3, the operator P is a Fourier multiplier by
the matrix function P̂(ξ) = (ξξ>)/|ξ|2. This is an orthogonal projector, and hence both
P and 1−P are positive semidefinite in L2(Ω−)3. It is also clear that the multiplication by
a continuous function on Ω− commutes with P modulo compact operators on L2(Ω−)3.
Define

ε−r (x) = min{1, εr(x)} .

Then there holds up to a compact perturbation

(E, (1−A)E)∼ (E, (1− (1− εr)P)E)

= (E, ε−r E) + (E, (1− ε−r )(1− P)E) + (E, (εr − ε−r )PE)

∼ (E, ε−r E) + (E1, (1− P)E1) + (E2,PE2)

≥ (E, ε−r E) ,

where E1 =
√

1− ε−r E and E2 =
√
εr − ε−r E .

This shows (11) with c = min{1, ε1}. �

5. Conclusion and perspectives

Under the realistic hypothesis of discontinuity of the electric permittivity across the
boundary of a dielectric, we first derived two integral formulations: a volume integral
equation and a coupled surface-volume system of integral equations. We also justified
equivalence between the electromagnetic scattering problem and the two integral formu-
lations. We established well-posedness for all the problems. The coupled surface-volume
integral formulation was easy to analyze, because it involves only weakly singular inte-
grals. The equivalence with the volume integral equation then gives results also for this
strongly singular integral equation. Since the VIE is posed in L2 and satisfies a G̊arding
inequality, it is suitable for numerical approximations using L2-conforming finite ele-
ments, because any Galerkin method will lead to a stable discretization scheme.
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[10] J. C. Nédélec, Acoustic and Electromagnetic Equations, Integral Representations for Harmonic

Problems, Springer-Verlag, New York, 2000.
[11] M. H. Protter, “Unique continuation for elliptic equations”, Trans. Amer. Math. Soc., vol.95(1), pp.

81-91, 1960.
[12] J. Rahola, “Spectrum of the volume integral operator of electromagnetic scattering”, SIAM J. Sci.

Comput., vol. 21(5), pp. 1740-1754, 2000.

13


