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1 Introduction

Time dependence is an essential feature in many engineering applications that
are modelled by partial differential equations and, eventually, by boundary
integral equations. Boundary element methods (BEM) have been successfully
applied to many such problems from fields like elastodynamics, fluid dynamics,
or acoustics.

Such problems are frequently modelled by hyperbolic equations, and elliptic
equations are obtained in the limit cases of stationary or time-harmonic prob-
lems or with the help of the Laplace transform. Parabolic problems can be ob-
tained in their own right in problems of heat transfer or other diffusion problems
or also as certain (large damping) limit cases: In electrodynamics, for instance,
for small frequencies and large conductivities, the limiting parabolic equation
is used to describe eddy current problems.

It has been known for a long time that parabolic and hyperbolic initial-boundary
value problems allow a reduction to boundary integral equations in a way very
similar to elliptic boundary value problems. But compared to the vast litera-
ture about the boundary integral equations for the elliptic case, covering both
their theoretical properties and their numerical approximation, the mathemat-
ical treatment of the boundary integral equations for parabolic and hyperbolic
problems is rather modest in volume. There have been, however, some signif-
icant developments in this area in recent years. In this article, we will try to
give a survey over some of the main mathematical ideas involved. Given the
fast growth of the field of BEM, both on the side of engineering applications
and on the side of mathematical and numerical analysis, the list of references
cannot, of course, be comprehensive.
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2 Some highlights of the mathematical history
of time-dependent BEM

In the wake of the big success of BEM for elliptic boundary value problems,
there have been many experiences with time-dependent BEM from the engi-
neering side at least since 1980. The books [2], [6] contain reports about such
experiments for hyperbolic problems, and [6], [7], [23] for parabolic problems.
We shall concentrate here on the description of mathematical ideas (while keep-
ing in mind the needs of the applications).

In the field of boundary integral equations for parabolic problems, the classi-
cal subject is, just as for elliptic problems, the study of integral equations of
the second kind. These are of Volterra type (and for more than one space
dimension, of Fredholm-Volterra type), and their theory for the case of smooth
boundaries is summarized in POGORZELSKI’s works [26]. This theory works in
L? spaces and has as its basic result the fact that such a Fredholm-Volterra
integral operator K has the typical Volterra property of being quasi-nilpotent,
i. e., A+ K is invertible for any A # 0.

Recent generalizations of this classical theory have the common feature that
they closely (and sometimes amazingly closely) parallel similar developments
for the case of elliptic equations.

Thus PIRIOU’s parabolic pseudodifferential operators [24, 25] treat parabolic
equations as anisotropic elliptic equations. PIRIOU’s calculus contains the com-
plete theory (regularity and solvability in Sobolev spaces) for all the boundary
integral operators arising in the treatment of the standard initial-boundary
value problems for the heat equation, provided that the boundary is a closed
smooth surface.

For closed non-smooth (Lipschitz) boundaries, the theory as well as a certain
Nystrom approximation method for the second-kind integral equations in L?
spaces was studied by DAHLBERG& VERCHOTA, BROWN, TORRES and others
(see [1, 8, 13]). A collocation method for second-kind integral equations on
certain non-smooth domains was studied in [12].

For elliptic problems, the variational formulation of boundary integral equa-
tions was the key point that allowed to import ideas from the field of fi-
nite element methods (FEM) into BEM. Thus the coercivity of the opera-
tor of the single layer potential, shown by NEDELEC&PLANCHARD [21] and
Hs1AO& WENDLAND [17] was essential in several respects: for the proof of
convergence of any Galerkin approximation method (including recently stud-
ied methods based on modern ideas like multigrid, domain decomposition, h-p
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or adaptive methods); for the possibility to allow open boundaries arising in
crack, screen, or antenna problems; and also for the analysis of the coupling
of boundary integral methods with other variational methods, e. g. variational
inequalities or FEM-BEM coupling.

The coercivity of the single layer heat potential had been conjectured for some
time, but when the correct result (see Theorem 5.2) was found in 1987 si-
multaneously by D. ARNOLD and the author, its essentially “elliptic” nature
came as somewhat of a surprise. A proof of this result and its application
to Galerkin methods on smooth surfaces was published by ARNOLD&NOON
[3, 22]. Different methods of proof, generalizations of the result to other inte-
gral operators constituting the Calderén projector for the heat equation and to
non-smooth surfaces as well as applications to various initial-boundary value
problems and to the coupling with FEM were given by the author [11]. A gen-
eralization to another parabolic problem describing the Stokes flow, was given
by HEBEKER& HS1AO [16].

A new and different development is LUBICH s “operational quadrature method”
which is not based on the analogy with elliptic problems but rather takes the
evolutional nature of the problem seriously. It allows to combine numerical
methods for ordinary differential equations with standard BEM for the spatial
(elliptic) part. LUBICH&SCHNEIDER [20] applied this technique to space-time
integral equations for the heat equation, and LUBICH [19] showed how to apply
it even to hyperbolic problems.

In the field of boundary integral equations for hyperbolic problems, apart from
LuBICH’s work just mentioned, variational methods are dominating, too. Here
no (classical or recent) theory of second-kind integral equations seems to be
available. BAMBERGER&HA DUONG [4] used a variational formulation of wave
equation problems by J. L. Lions and local Fourier analysis to show coercivity
of the single layer potential for the wave equation. Here the non-elliptic nature
of the problem is felt in the loss of some regularity and also in the exponential
growth of the stability constants with respect to time. This technique has been
generalized to elastodynamics [5, 9] and to electrodynamics [27, 14, 28]. An
independent development of variational methods for the space-time boundary
integral equations in elastodynamics is described by KHUTORYANSKY [18, 29].

3 Notations

We will now study some of the above-mentioned ideas in closer detail. We
consider only the simplest model problem of each type. Let Q@ C R", (n >2),
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be a domain with compact boundary I'. The outer normal derivative is denoted
by 0,. Let T > 0 be fixed. We denote by ) the space-time cylinder over {2
and X its lateral boundary:

Q=0,T)xQ; Y=0,T)xT; 9Q=({0} xQHUZU{T} xQ).
Elliptic problem (with frequency w € C):

(A4+wHu=0 1inQ;
u =g (Dirichlet) or d,u =h (Neumann) on I ; (E)

radiation condition at co.

Parabolic problem:

(0 —A)u=0 inQ;
= ¢ (Dirichlet) or d,u="h (Neumann) on ¥; (P)
0 fort<0.

Hyperbolic problem:

(02 —A)ju=0 inQ;
u =g (Dirichlet) or d,u=~h (Neumann) on ¥; (H)
u=0 Tfort<0.

4 Representation formulas and integral
operators

We derive boundary integral equations by a general method that is valid (under
suitable hypotheses on the data, €™ will certainly suffice...) in the same way
for all 3 types of problems. In fact, what counts for (£?) and () is the fact
that the boundary ¥ is non-characteristic.

The first ingredient for a BEM is a fundamental solution G'. In 3D we have,

respectively:

ezw|x|

Guli) = o (4)
R e e ()
Gt ) {0 >0 ()
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G(t,x) = ot — [z} ()

4|

From Green’s formula, the following representation formulas follow for a solu-
tion u of the homogeneous partial differential equation and = ¢ I'; [v] denotes
the jump of v across I':

= [{0.Gla = ey - Gla = D)} doly) ()
ulty2) = [ {0 Gle—s, 2 =) luls,0)] = Gl = 5,2 =) D)} doy) ()

:/t/{an@)G(t—s,x—y)[u(s,y)]—G(t—sx DDy} doty) ()

~ [ lutt = o= sl - =N

Ar|e — y

[Oru(t — o —yl,y)]
R
dr|e —y|

[Opu(t — |z —yl,y)] do(y).

Thus the representation in the parabolic case uses integration over the past
portion of ¥, whereas in the hyperbolic case, only the intersection of the interior
of the backward light cone with ¥ is involved. In 3D, where Huyghens’ principle
is valid, the last formula shows that the integration can be restricted to I, giving
a very simple representation by “retarded potentials”.

We can write all 3 representation formulas in a unified way, thereby introducing
the single layer potential . and the double layer potential Z:

u=Z([u]) = ([Onu]).
There hold the classical jump relations

v o [0, 2v] = 0
[Z¢] = 0 ; [0.7¢] = —¢

It appears therefore natural to introduce the boundary operators from the one-
sided traces on the exterior (I'"') and interior (I'") of T

Vo o= 5”‘ (single layer potential)

K = @‘ + @‘ (double layer potential)

K' = 1(d, 5”‘ + d, 5”‘ (normal derivative of single layer potential)
W = —8 9 ‘F (normal derivative of double layer potential)
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In the standard way, the jump relations together with these definitions lead to
boundary integral equations for the Dirichlet and Neumann problems. Typ-
ically one has a choice of at least 4 equations for each problem: The first 2
equations come from taking the traces in the representation formula (“direct
method”), the third one comes form a single layer representation

u= .Y with unknown
and the fourth one from a double layer representation
u=Y%w with unknown w :

For the exterior Dirichlet problem (u ‘F = g given, d,u LT unknown ):

(D1) Ve = (—3+K)g
(D2) (3 + Ky = —Wyg
(D3) Vi =y

(D4) (%-I—K)w = g

For the exterior Neumann problem (u ‘F = ¢ = v unknown, Jd,u L= h given):

(N1) (A—Kpw = —Vh
(N2) Wo = —(3+K)h
(NV3) (3K = —h
(N4) Ww = —h

Remember that this formal derivation is rigorously valid for all 3 types of prob-
lems. One notes that second-kind and first-kind integral equations alternate
nicely. For open surfaces, however, only the first-kind integral equations exist.
The reason is that a boundary value problem on an open surface fixes not only
a one-sided trace but also the jump of the solution; and therefore the repre-
sentation formula coincides with a single layer representation for the Dirichlet
problem and with a double layer potential representation for the Neumann
problem.

For reasons mentioned above, we will not treat the second-kind boundary in-
tegral equations in detail here. Suffice it to say that the key observation in the
parabolic case is the fact that for smooth I', the operator norm in LP(¥) of
the weakly singular operator K tends to 0 as T'— 0. This implies that %:I: K
and 1+ K’ are isomorphisms in L” (and also in C"), first for small 7" and
then by iteration for all T'. It T' has corners, this argument breaks down, and
quite different methods, including variational arguments, have to be used.
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5 First-kind integral operators:
Green’s formula

In the following, we restrict the presentation to the single layer potential opera-
tor V. We emphasize, however, that a completely analogous theory is available
for the hypersingular operator W .

The variational methods for the first-kind integral operators are based on the
first Green formula which gives, together with the jump relations, a formula
valid again for all 3 types of equations: If ¢ and @ are givenon I' or ¥, satisty
a finite number of conditions guaranteeing the convergence of the integrals on

the right hand side of (5.1) and
u= S, v= Y,

then
/c,oV;/)da = / {Vu-Vo+uAv}de. (5.1)
r Ro\T

5.1 (8)
For the elliptic case, we obtain ( <-,->p denotes L* duality on T');

<, Vo>t = /]Rn\r(|Vu|2 — w2|u|2) dex .

This gives the following theorem (see [10]) that serves as a model for the other
two types:

Theorem 5.1 Let T' be a bounded Lipschitz surface, open or closed. H'?(T)
and H=Y*(') denote the usual Sobolev spaces, and f{_l/z(F) for an open
surface is the dual of H'Y*(T'). Then

(i) For w =0, n>3: V:H YY) — HYXT) is an isomorphism, and
there is an o« > 0 such that

<@, Vo>t 2 allollgo -

(ii) For any w and n, there is an a >0 and a compact quadratic form k on

f{_l/z(F) such that
Re <y, V>r > OéHS‘QH%—lﬁ(F) - k(‘fo) .

(tii) If w is not an interior or exterior ejgenfrequency, then V' is an iso-
morphism, and every Galerkin method in H=Y*(T') for the equation Vi = g
converges.
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5.2 (2)

For the parabolic case, integration over t gives

T
<p,Ve>y /0 /}Rn\r{wxu(t, z)|? + Owu} dx dt

1
- //|qu(t,:1;)|2dxdt—|— 5/ (T, )| da .
]Rn

The positivity of the quadratic form associated to the operator V is evident.
What is less evident is the nature of the energy norm for V', however. It turns
out [3, 11] that one has to consider anisotropic Sobolev spaces of the following
form

Hy* () = L*0,T; H (') N HE(0,T; L¥(T)).

The index 0 indicates that zero initial conditions at ¢ = 0 are incorporated.
The optional =~ means zero boundary values on the boundary of the (open)
manifold I'. One has the following theorem which is actually simpler than its
elliptic counterpart.

Theorem 5.2 Let I' be a bounded Lipschitz surface, open or closed, n > 2.
L _1_1

(i) V:Hy? *(X) = H*(X) is an isomorphism, and there is an o« >0 such
that

<p, Ve>s 2 04”99"2_;_7_%

L_1_1

(ii) Every Galerkin method in Hy? *(X) for the equation Vi = g converges.
The Galerkin matrices have positive definite symmetric part. Typical error
estimates are of the form

lo = enell_s 1 < C (B2 + ETHD2)| g

)

7’,% 5

if oni isthe Galerkin solution in a tensor product space of splines of mesh-size
k in time and finite elements of mesh-size h in space.

5.3 ()
For the wave equation, choosing ¢ = ¢ in the Green formula (5.1) does not

give a positive definite expression. Instead, one can choose ¢ = dyp. This cor-
responds to the usual procedure in the weak formulation of the wave equation,
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and 1t gives

T
<Oup, V> = //\{atvxa-vxwaafu}dxdt
0 JR™\ID

- : [T )+ (T ) )

Once again, as in the elliptic case, this shows the close relation of the operator
V' with the total energy of the system. In order to obtain a norm ( H'(Q)) on
the right hand side, one can integrate a second time over t. But in any case,
here the bilinear form <d;p, Ve>y will not be bounded in the same norm
where its real part is positive. So there will be a loss of regularity, and any
error estimate has to use two different norms. No “natural” energy space for
the operator V presents itself.

6 First-kind integral operators:
Fourier analysis

A closer view of what is going on can be obtained using space-time Fourier
transformation. For this, one has to assume that I' is flat, i. e. a subset of
R”™ 1. Then all the operators are convolutions and as such are represented by
multiplication operators in Fourier space. If I' is not flat but smooth, then
the results for the flat case describe the principal part of the operators. To
construct a complete analysis, one has to consider lower order terms coming
from coordinate transformations and localizations. Whereas this is a well-
known technique in the elliptic and parabolic cases, namely part of the calculus
of pseudodifferential operators, it has so far prevented the construction of a
completely satisfactory theory for the hyperbolic case.

We denote the dual variables to (¢,x) by (w,£),and 2’ and ¢ are the variables
related to I' € R™™!. It is then easily seen that the form of the single layer
potential is

THE) = LET — ) () ()
Vi(w.¢) =
Vi(w.t) =
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Note that (&) and () differ only in the role of w: For (&) it is a fixed pa-
rameter, for (J#) it is one of the variables, and this is crucial in the application
of Parseval’s formula for <@, V>

6.1 (&)

For the elliptic case, the preceding formula implies Theorem 5.1: If w = 0, then
the function 1[¢'|~" is positive and for large |¢'| equivalent to (1 + |¢'|?)71/2,
the Fourier weight defining the Sobolev space H='*(T'). If w # 0, then the
principal part (as |¢/| — oo) is still 2|¢|7", so only a compact perturbation
is added. There is an additional observation by HA DUONG [15]: If w is real,
then 1(|¢']* — wz)_% is either positive or imaginary, so its real part is positive
except on the bounded set |¢| < |w|. This implies

Proposition 6.1 Let w? >0, I' flal, supp e compact. Then there is an
a(w) > 0 such that

Re <, V>t > a(w) [l¢llf-. -

The work of transforming this estimate into error estimates for the BEM in the
hyperbolic case still has to be done.

6.2 (2)
For the parabolic case, the symbol of the single layer potential,
1 L1
ov(w,€) = S +iw) 2
has again positive real part. In addition, it is sectorial:
s
L

This has the consequence that its real part and absolute value are equivalent
(an “elliptic” situation):

|arg ov(w, )| <

L

CL[lE +iw| * < Reov(w, &) < Ca||E + i

1
2

In addition, for large |&'|*+ |w]|, this is equivalent to ((1 + [£'|*) + |<,u|)_1/2 , the
Fourier weight defining the space H_%’_%(Z). This explains Theorem 5.2. It
also shows clearly the difference to the heat operator 9; — A itself: The symbol
of the latter is |£]? + 4w, and the real part and absolute value of this function
are not equivalent.
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6.3 (1)

In the hyperbolic case, the symbol oy does not have positive real part. Instead,
one has to multiply it by @ and to use a complex frequency w = wpr + wy
with w; fixed. Then one gets

Re (i@(¢'] —w?)F) 2 (e + o)}

and similar estimates given by BAMBERGER&HA DUONG [4]. One introduces
another class of anisotropic Sobolev spaces of the form

HT"(RxT)=A{u|u,d/ue H (R xTI)}
with the norm

lellvwwr = [ [ Wl + el

Imw=w;y

(w, &) de’ dw .

We give one example of a theorem obtained in this way.

Theorem 6.2 Let I' be bounded and smooth, r,s € R. Then
(i) VHgTES) = BEPY(S) and VL HEHT(E) - HE(S)
are conlinuous.

(ii) Let w; > 0 and the bilinear form a(e,) be defined by
alori) = [ et [(V)(ta) Bap(t,a) dofe) di
0 r
Then there ts an « > 0 such that

Rea(p,¢) Z awrllllZy ., -
(iii) The Galerkin matrices for the scheme: Find ¢n € Xy such that

alpn, ) = <g,0pb>s Vi € Xy

have positive definite hermitian part, and there is an error estimate

_L
lp = enll-you, < Cwr® inf llo—dll_1.,.
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7 A time-stepping method

The Galerkin methods for parabolic and hyperbolic problems studied in the
previous sections are global in time: They use the boundary data for 0 <
t < T to compute the unknowns on the boundary and hence the solution u
also for ¢ € [0,7] in one step. Thus, in general, the Volterra convolution
structure (causality) of the differential and integral equations will be lost by
discretization. Only in special cases, this structure is conserved on the discrete
level. If, for example, for the single layer heat potential, the trial functions are
piecewise constant in time, then the Galerkin matrix will have the form

Bo

B1 . O
. (1)

B, -+ B By

Here the blocks B; are n, xn, matrices ( n, = number of degrees of freedom of

the space discretization; n; = number of time steps). Thus only By has to be

inverted, and in order to increase n; by one, only one new matrix B,, 41 has to

be computed. If, however, the order of approximation in time is increased, then

the matrix will have more and more blocks above the diagonal and therefore

lose the discrete causal structure. For piecewise linear approximation in time

with the usual hat function basis, for example, the matrix will have the form

BO B_1 O

. B_1
B,, By
This problem vanishes if one replaces the space-time Galerkin boundary ele-
ment approximation by a different method, the recently developped “opera-
tional quadrature” method of LUBICH [19, 20]. We will not spoil the reader’s
pleasure of reading these two papers by describing their contents in detail; we

shall rather give an indication of the basic idea.

In this method, one discretizes not the space-time operator with its kernel as
given above in section 4, but rather its Laplace transform with respect to time.
This kernel corresponds to an elliptic problem, and for the space discretization
one can choose any suitable BEM for elliptic problems, for instance colloca-
tion instead of Galerkin methods. For the time discretization, one chooses a
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discretization scheme for ordinary differential equations. This scheme has to
satisfy certain stability conditions. If it is an explicit linear multistep method,
then the resulting matrix will be of the block triangular form 7.1, although the
method can be of higher order in time.

More precisely, the operational quadrature method considers an operator-valued
convolution operator

g|—>/ (t—7)g(r)dr = K(0)g.

The basic object is the Laplace-transformed kernel K(s) = [;7 e *"k(t)dt.
With a linear multistep method for y' = f(t,y),

aolYn + a1Yn—1 + -+ pYn—k = h (bOfn + -+ bkfn—k)
and its characteristic function,

8(¢) = (ao+ ar¢ + -+ ar¢*)/(bo + bi¢ + -+ + b,

one constructs the following approximation of K(0;)g:

(ah Zw]g (t—gh),

7>0

where the w; are the Taylor coefficients of K(6(()/h) at ( =0:

Z(‘UJC]

7>0

This discretization has the following decisive properties:
R1(9)) - K2(9)) = (K- K2)(9;);
if y; = (K(97)g)(jh) and Y(¢) = y;¢’, G() =2 g;¢" then

vo= ka0,

In the application to time-dependent BEM, one thinks of A as the inverse
of the space discretization. K (9!) is then an approximation of the inverse
of the space-time integral operator in question. The coefficients are therefore
the result of an elliptic BEM performed for a certain number of complex fre-

M, where ( runs through the nodes of some quadrature rule on a

quencies 7
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small circle in the complex plane. This method promises to be very efficient,
in particular since it allows to combine some of the recently developped so-
phisticated BEM for elliptic problems with well-known high order methods for
ordinary differential equations and fast methods for the computation of Fourier
coefficients. How it competes, for example, with very simple direct space-time
methods using retarded potentials for the 3D wave equation, remains to be
seen, however.
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