
In: L. Jentsch, F. Tr�oltzsch (eds.),Problems and Methods in Math-ematical Physics, B. G. Teubner,Leipzig 1994, pp. 17{32.Developments in Boundary ElementMethods for Time-Dependent ProblemsMartin Costabel1 IntroductionTime dependence is an essential feature in many engineering applications thatare modelled by partial di�erential equations and, eventually, by boundaryintegral equations. Boundary element methods (BEM) have been successfullyapplied to many such problems from �elds like elastodynamics, 
uid dynamics,or acoustics.Such problems are frequently modelled by hyperbolic equations, and ellipticequations are obtained in the limit cases of stationary or time-harmonic prob-lems or with the help of the Laplace transform. Parabolic problems can be ob-tained in their own right in problems of heat transfer or other di�usion problemsor also as certain (large damping) limit cases: In electrodynamics, for instance,for small frequencies and large conductivities, the limiting parabolic equationis used to describe eddy current problems.It has been known for a long time that parabolic and hyperbolic initial-boundaryvalue problems allow a reduction to boundary integral equations in a way verysimilar to elliptic boundary value problems. But compared to the vast litera-ture about the boundary integral equations for the elliptic case, covering boththeir theoretical properties and their numerical approximation, the mathemat-ical treatment of the boundary integral equations for parabolic and hyperbolicproblems is rather modest in volume. There have been, however, some signif-icant developments in this area in recent years. In this article, we will try togive a survey over some of the main mathematical ideas involved. Given thefast growth of the �eld of BEM, both on the side of engineering applicationsand on the side of mathematical and numerical analysis, the list of referencescannot, of course, be comprehensive. 17



2 Some highlights of the mathematical historyof time-dependent BEMIn the wake of the big success of BEM for elliptic boundary value problems,there have been many experiences with time-dependent BEM from the engi-neering side at least since 1980. The books [2], [6] contain reports about suchexperiments for hyperbolic problems, and [6], [7], [23] for parabolic problems.We shall concentrate here on the description of mathematical ideas (while keep-ing in mind the needs of the applications).In the �eld of boundary integral equations for parabolic problems, the classi-cal subject is, just as for elliptic problems, the study of integral equations ofthe second kind. These are of Volterra type (and for more than one spacedimension, of Fredholm-Volterra type), and their theory for the case of smoothboundaries is summarized in Pogorzelski's works [26]. This theory works inLp spaces and has as its basic result the fact that such a Fredholm-Volterraintegral operator K has the typical Volterra property of being quasi-nilpotent,i. e., �+K is invertible for any � 6= 0 .Recent generalizations of this classical theory have the common feature thatthey closely (and sometimes amazingly closely) parallel similar developmentsfor the case of elliptic equations.Thus Piriou's parabolic pseudodi�erential operators [24, 25] treat parabolicequations as anisotropic elliptic equations. Piriou's calculus contains the com-plete theory (regularity and solvability in Sobolev spaces) for all the boundaryintegral operators arising in the treatment of the standard initial-boundaryvalue problems for the heat equation, provided that the boundary is a closedsmooth surface.For closed non-smooth (Lipschitz) boundaries, the theory as well as a certainNystr�om approximation method for the second-kind integral equations in Lpspaces was studied by Dahlberg&Verchota, Brown, Torres and others(see [1, 8, 13]). A collocation method for second-kind integral equations oncertain non-smooth domains was studied in [12].For elliptic problems, the variational formulation of boundary integral equa-tions was the key point that allowed to import ideas from the �eld of �-nite element methods (FEM) into BEM. Thus the coercivity of the opera-tor of the single layer potential, shown by Nedelec&Planchard [21] andHsiao&Wendland [17] was essential in several respects: for the proof ofconvergence of any Galerkin approximation method (including recently stud-ied methods based on modern ideas like multigrid, domain decomposition, h-p18



or adaptive methods); for the possibility to allow open boundaries arising incrack, screen, or antenna problems; and also for the analysis of the couplingof boundary integral methods with other variational methods, e. g. variationalinequalities or FEM{BEM coupling.The coercivity of the single layer heat potential had been conjectured for sometime, but when the correct result (see Theorem 5.2) was found in 1987 si-multaneously by D. Arnold and the author, its essentially \elliptic" naturecame as somewhat of a surprise. A proof of this result and its applicationto Galerkin methods on smooth surfaces was published by Arnold&Noon[3, 22]. Di�erent methods of proof, generalizations of the result to other inte-gral operators constituting the Calder�on projector for the heat equation and tonon-smooth surfaces as well as applications to various initial-boundary valueproblems and to the coupling with FEM were given by the author [11]. A gen-eralization to another parabolic problem describing the Stokes 
ow, was givenby Hebeker&Hsiao [16].A new and di�erent development is Lubich's \operational quadrature method"which is not based on the analogy with elliptic problems but rather takes theevolutional nature of the problem seriously. It allows to combine numericalmethods for ordinary di�erential equations with standard BEM for the spatial(elliptic) part. Lubich&Schneider [20] applied this technique to space-timeintegral equations for the heat equation, and Lubich [19] showed how to applyit even to hyperbolic problems.In the �eld of boundary integral equations for hyperbolic problems, apart fromLubich's work just mentioned, variational methods are dominating, too. Hereno (classical or recent) theory of second-kind integral equations seems to beavailable. Bamberger&Ha Duong [4] used a variational formulation of waveequation problems by J. L. Lions and local Fourier analysis to show coercivityof the single layer potential for the wave equation. Here the non-elliptic natureof the problem is felt in the loss of some regularity and also in the exponentialgrowth of the stability constants with respect to time. This technique has beengeneralized to elastodynamics [5, 9] and to electrodynamics [27, 14, 28]. Anindependent development of variational methods for the space-time boundaryintegral equations in elastodynamics is described by Khutoryansky [18, 29].3 NotationsWe will now study some of the above-mentioned ideas in closer detail. Weconsider only the simplest model problem of each type. Let 
 � Rn , (n � 2) ,19



be a domain with compact boundary � . The outer normal derivative is denotedby @n . Let T > 0 be �xed. We denote by Q the space-time cylinder over 
and � its lateral boundary:Q = (0; T )� 
 ; � = (0; T )� � ; @Q = (f0g � 
) [ � [ (fTg � 
) :Elliptic problem (with frequency ! 2 C ):(�+ !2)u = 0 in 
 ;u = g (Dirichlet) or @nu = h (Neumann) on � ;radiation condition at 1 : (E)Parabolic problem:(@t ��)u = 0 in Q ;u = g (Dirichlet) or @nu = h (Neumann) on � ;u = 0 for t � 0 : (P)Hyperbolic problem:(@2t ��)u = 0 in Q ;u = g (Dirichlet) or @nu = h (Neumann) on � ;u = 0 for t � 0 : (H)4 Representation formulas and integraloperatorsWe derive boundary integral equations by a general method that is valid (undersuitable hypotheses on the data, C1 will certainly su�ce. . . ) in the same wayfor all 3 types of problems. In fact, what counts for (P) and (H ) is the factthat the boundary � is non-characteristic.The �rst ingredient for a BEM is a fundamental solution G . In 3D we have,respectively: G!(x) = ei!jxj4�jxj (E )G(t; x) = 8<: (4�t)�3=2e� jxj24t (t � 0)0 (t � 0) (P)20



G(t; x) = 14�jxj �(t� jxj) : (H )From Green's formula, the following representation formulas follow for a solu-tion u of the homogeneous partial di�erential equation and x 62 � ; [v] denotesthe jump of v across � :u(x) = Z�f@n(y)G(x� y)[u(y)]�G(x� y)[@nu(y)]g d�(y) (E )u(t; x) = Z t0 Z�f@n(y)G(t�s; x�y)[u(s; y)]�G(t�s; x�y)[@nu(y)]g d�(y) (P)u(t; x) = Z t0 Z�f@n(y)G(t�s; x�y)[u(s; y)]�G(t�s; x�y)[@nu(y)]g d�(y) (H )= Z�f@n(y) 14�jx� yj [u(t� jx� yj; y)]� @n(y)jx� yj4�jx� yj [@tu(t� jx� yj; y)]� 14�jx� yj[@nu(t� jx� yj; y)] d�(y) :Thus the representation in the parabolic case uses integration over the pastportion of �, whereas in the hyperbolic case, only the intersection of the interiorof the backward light cone with � is involved. In 3D, where Huyghens' principleis valid, the last formula shows that the integration can be restricted to �, givinga very simple representation by \retarded potentials".We can write all 3 representation formulas in a uni�ed way, thereby introducingthe single layer potential S and the double layer potential D :u = D([u])�S ([@nu]) :There hold the classical jump relations[Dv] = v ; [@nDv] = 0 ;[S'] = 0 ; [@nS '] = �' :It appears therefore natural to introduce the boundary operators from the one-sided traces on the exterior (�+) and interior (��) of �:V := S ���� (single layer potential)K := 12(D ����+ +D �����) (double layer potential)K 0 := 12(@nS ����+ + @nS �����) (normal derivative of single layer potential)W := �@nD ���� (normal derivative of double layer potential)21



In the standard way, the jump relations together with these de�nitions lead toboundary integral equations for the Dirichlet and Neumann problems. Typ-ically one has a choice of at least 4 equations for each problem: The �rst 2equations come from taking the traces in the representation formula (\directmethod"), the third one comes form a single layer representationu = S  with unknown  and the fourth one from a double layer representationu = Dw with unknown w :For the exterior Dirichlet problem (u ���� = g given, @nu ���� = ' unknown):(D1) V ' = (�12 +K)g(D2) (12 +K 0)' = �Wg(D3) V  = g(D4) (12 +K)w = gFor the exterior Neumann problem (u ���� = g = v unknown, @nu ���� = h given):(N1) (12 �K)v = �V h(N2) Wv = �(12 +K 0)h(N3) (12 �K 0) = �h(N4) Ww = �hRemember that this formal derivation is rigorously valid for all 3 types of prob-lems. One notes that second-kind and �rst-kind integral equations alternatenicely. For open surfaces, however, only the �rst-kind integral equations exist.The reason is that a boundary value problem on an open surface �xes not onlya one-sided trace but also the jump of the solution; and therefore the repre-sentation formula coincides with a single layer representation for the Dirichletproblem and with a double layer potential representation for the Neumannproblem.For reasons mentioned above, we will not treat the second-kind boundary in-tegral equations in detail here. Su�ce it to say that the key observation in theparabolic case is the fact that for smooth � , the operator norm in Lp(�) ofthe weakly singular operator K tends to 0 as T ! 0 . This implies that 12�Kand 12 �K 0 are isomorphisms in Lp (and also in Cm ), �rst for small T andthen by iteration for all T . If � has corners, this argument breaks down, andquite di�erent methods, including variational arguments, have to be used.22



5 First-kind integral operators:Green's formulaIn the following, we restrict the presentation to the single layer potential opera-tor V . We emphasize, however, that a completely analogous theory is availablefor the hypersingular operator W .The variational methods for the �rst-kind integral operators are based on the�rst Green formula which gives, together with the jump relations, a formulavalid again for all 3 types of equations: If ' and  are given on � or � , satisfya �nite number of conditions guaranteeing the convergence of the integrals onthe right hand side of (5.1) andu = S '; v = S  ;then Z� 'V  d� = ZRnn�fru � rv + u�vg dx : (5.1)5.1 (E )For the elliptic case, we obtain (<�; �>� denotes L2 duality on � );<'; V '>� = ZRnn�(jruj2 � !2juj2) dx :This gives the following theorem (see [10]) that serves as a model for the othertwo types:Theorem 5.1 Let � be a bounded Lipschitz surface, open or closed. H1=2(�)and H�1=2(�) denote the usual Sobolev spaces, and ~H�1=2(�) for an opensurface is the dual of H1=2(�) . Then(i) For ! = 0 , n � 3 : V : ~H�1=2(�) ! H1=2(�) is an isomorphism, andthere is an � > 0 such that<'; V '>� � �k'k2~H�1=2(�) :(ii) For any ! and n , there is an � > 0 and a compact quadratic form k on~H�1=2(�) such that Re<'; V '>� � �k'k2~H�1=2(�) � k(') :(iii) If ! is not an interior or exterior eigenfrequency, then V is an iso-morphism, and every Galerkin method in ~H�1=2(�) for the equation V  = gconverges. 23



5.2 (P)For the parabolic case, integration over t gives<'; V '>� = Z T0 ZRnn�fjrxu(t; x)j2+ @tuug dx dt= Z Z jrxu(t; x)j2 dx dt+ 12 ZRn ju(T; x)j2 dx :The positivity of the quadratic form associated to the operator V is evident.What is less evident is the nature of the energy norm for V , however. It turnsout [3, 11] that one has to consider anisotropic Sobolev spaces of the followingform ~Hr;s0 (�) = L2(0; T ; ~Hr(�)) \Hs0(0; T ; L2(�)) :The index 0 indicates that zero initial conditions at t = 0 are incorporated.The optional ~ means zero boundary values on the boundary of the (open)manifold � . One has the following theorem which is actually simpler than itselliptic counterpart.Theorem 5.2 Let � be a bounded Lipschitz surface, open or closed, n � 2 .(i) V : ~H� 12 ;� 140 (�)! Hr;s0 (�) is an isomorphism, and there is an � > 0 suchthat <'; V '>� � �k'k2� 12 ;� 14 :(ii) Every Galerkin method in ~H� 12 ;� 140 (�) for the equation V  = g converges.The Galerkin matrices have positive de�nite symmetric part. Typical errorestimates are of the formk'� 'h;kk� 12 ;� 14 � C (hr+ 12 + k(r+ 12 )=2)k'kr; r2 ;if 'h;k is the Galerkin solution in a tensor product space of splines of mesh-sizek in time and �nite elements of mesh-size h in space.5.3 (H )For the wave equation, choosing ' =  in the Green formula (5.1) does notgive a positive de�nite expression. Instead, one can choose ' = @t . This cor-responds to the usual procedure in the weak formulation of the wave equation,24



and it gives<@t'; V '>� = Z T0 ZRnn�f@trxu � rxu+ u@2t ug dx dt= 12 ZRnn�fjrxu(T; x)j2 + j@tu(T; x)j2g dx :Once again, as in the elliptic case, this shows the close relation of the operatorV with the total energy of the system. In order to obtain a norm (H1(Q) ) onthe right hand side, one can integrate a second time over t . But in any case,here the bilinear form <@t'; V '>� will not be bounded in the same normwhere its real part is positive. So there will be a loss of regularity, and anyerror estimate has to use two di�erent norms. No \natural" energy space forthe operator V presents itself.6 First-kind integral operators:Fourier analysisA closer view of what is going on can be obtained using space-time Fouriertransformation. For this, one has to assume that � is 
at, i. e. a subset ofRn�1 . Then all the operators are convolutions and as such are represented bymultiplication operators in Fourier space. If � is not 
at but smooth, thenthe results for the 
at case describe the principal part of the operators. Toconstruct a complete analysis, one has to consider lower order terms comingfrom coordinate transformations and localizations. Whereas this is a well-known technique in the elliptic and parabolic cases, namely part of the calculusof pseudodi�erential operators, it has so far prevented the construction of acompletely satisfactory theory for the hyperbolic case.We denote the dual variables to (t; x) by (!; �) , and x0 and �0 are the variablesrelated to � � Rn�1 . It is then easily seen that the form of the single layerpotential is dV  (�0) = 12(j�0j2 � !2)� 12  ̂(�0) (E )dV  (!; �0) = 12(j�0j2 + i!)� 12  ̂(!; �0) (P)dV  (!; �0) = 12(j�0j2 � !2)� 12  ̂(!; �0) (H )25



Note that (E ) and (H ) di�er only in the role of ! : For (E ) it is a �xed pa-rameter, for (H ) it is one of the variables, and this is crucial in the applicationof Parseval's formula for <'; V '> .6.1 (E )For the elliptic case, the preceding formula implies Theorem 5.1: If ! = 0 , thenthe function 12 j�0j�1 is positive and for large j�0j equivalent to (1 + j�0j2)�1=2 ,the Fourier weight de�ning the Sobolev space H�1=2(�) . If ! 6= 0 , then theprincipal part (as j�0j ! 1 ) is still 12j�0j�1 , so only a compact perturbationis added. There is an additional observation by Ha Duong [15]: If ! is real,then 12(j�0j2 � !2)� 12 is either positive or imaginary, so its real part is positiveexcept on the bounded set j�0j � j!j . This impliesProposition 6.1 Let !2 > 0 , � 
at, supp' compact. Then there is an�(!) > 0 such that Re<'; V '>� � �(!) k'k2~H�1=2 :The work of transforming this estimate into error estimates for the BEM in thehyperbolic case still has to be done.6.2 (P)For the parabolic case, the symbol of the single layer potential,�V (!; �0) = 12(j�0j2 + i!)� 12has again positive real part. In addition, it is sectorial:j arg �V (!; �0)j � �4 :This has the consequence that its real part and absolute value are equivalent(an \elliptic" situation):C1 ���j�0j2 + i!���� 12 � Re�V (!; �0) � C2 ���j�0j2 + i!���� 12 :In addition, for large j�0j2+ j!j , this is equivalent to ((1 + j�0j2) + j!j)�1=2 , theFourier weight de�ning the space H� 12 ;� 14 (�) . This explains Theorem 5.2. Italso shows clearly the di�erence to the heat operator @t�� itself: The symbolof the latter is j�j2 + i! , and the real part and absolute value of this functionare not equivalent. 26



6.3 (H )In the hyperbolic case, the symbol �V does not have positive real part. Instead,one has to multiply it by i! and to use a complex frequency ! = !R + i!Iwith !I �xed. Then one getsRe �i!(j�0j2 � !2) 12� � !I2 (j�0j2 + j!j2) 12and similar estimates given by Bamberger&Ha Duong [4]. One introducesanother class of anisotropic Sobolev spaces of the formHs;r(R� �) = fu j u; @rtu 2 Hs(R� �)gwith the normkukr;s;!I = ZIm!=!I ZRn�1 j!j2r(j�0j2 + j!j2)sjû(!; �0)j2 d�0 d! :We give one example of a theorem obtained in this way.Theorem 6.2 Let � be bounded and smooth, r; s 2 R . Then(i) V : ~Hs;r+ 120 (�)! Hs+1;r0 (�) and V �1 : Hs+1;r+1(�)! ~Hs;r0 (�)are continuous.(ii) Let !I > 0 and the bilinear form a('; ) be de�ned bya('; ) = Z 10 e�2!It Z�(V ')(t; x) @t (t; x) d�(x) dt :Then there is an � > 0 such thatRe a(';') � �!I k'k2� 12 ;0;!I :(iii) The Galerkin matrices for the scheme: Find 'N 2 XN such thata('N ;  ) = <g; @t >� 8 2 XNhave positive de�nite hermitian part, and there is an error estimatek'� 'Nk� 12 ;0;!I � C !� 12I inf 2XN k'�  k� 12 ;1;!I :27



7 A time-stepping methodThe Galerkin methods for parabolic and hyperbolic problems studied in theprevious sections are global in time: They use the boundary data for 0 �t � T to compute the unknowns on the boundary and hence the solution ualso for t 2 [0; T ] in one step. Thus, in general, the Volterra convolutionstructure (causality) of the di�erential and integral equations will be lost bydiscretization. Only in special cases, this structure is conserved on the discretelevel. If, for example, for the single layer heat potential, the trial functions arepiecewise constant in time, then the Galerkin matrix will have the form0BBBBB@ B0B1 . . . 0... . . . . . .Bnt � � � B1 B0 1CCCCCA (7.1)Here the blocks Bj are nx�nx matrices (nx = number of degrees of freedom ofthe space discretization; nt = number of time steps). Thus only B0 has to beinverted, and in order to increase nt by one, only one new matrix Bnt+1 has tobe computed. If, however, the order of approximation in time is increased, thenthe matrix will have more and more blocks above the diagonal and thereforelose the discrete causal structure. For piecewise linear approximation in timewith the usual hat function basis, for example, the matrix will have the form0BBBBB@ B0 B�1... . . . . . . 0... . . . . . . B�1Bnt � � � � � � B0 1CCCCCAThis problem vanishes if one replaces the space-time Galerkin boundary ele-ment approximation by a di�erent method, the recently developped \opera-tional quadrature" method of Lubich [19, 20]. We will not spoil the reader'spleasure of reading these two papers by describing their contents in detail; weshall rather give an indication of the basic idea.In this method, one discretizes not the space-time operator with its kernel asgiven above in section 4, but rather its Laplace transform with respect to time.This kernel corresponds to an elliptic problem, and for the space discretizationone can choose any suitable BEM for elliptic problems, for instance colloca-tion instead of Galerkin methods. For the time discretization, one chooses a28



discretization scheme for ordinary di�erential equations. This scheme has tosatisfy certain stability conditions. If it is an explicit linear multistep method,then the resulting matrix will be of the block triangular form 7.1, although themethod can be of higher order in time.More precisely, the operational quadrature method considers an operator-valuedconvolution operator g 7! Z t0 k(t� � ) g(� ) d� =: K(@t) g :The basic object is the Laplace-transformed kernel K(s) = R10 e�stk(t) dt .With a linear multistep method for y0 = f(t; y) ,a0yn + a1yn�1 + � � �+ akyn�k = h (b0fn + � � � + bkfn�k)and its characteristic function,�(�) = (a0 + a1� + � � �+ ak�k)=(b0 + b1� + � � � + bk�k) ;one constructs the following approximation of K(@t)g :K(@ht )g(t) =Xj�0!jg(t� jh) ;where the !j are the Taylor coe�cients of K(�(�)=h) at � = 0 :K(�(�)h ) =Xj�0!j�j :This discretization has the following decisive properties:K1(@ht ) �K2(@ht ) = (K1 �K2)(@ht ) ;if yj = (K(@ht )g)(jh) and Y (�) = P yj�j , G(�) = P gj�j thenY (�) = K(�(�)h )G(�) :In the application to time-dependent BEM, one thinks of K as the inverseof the space discretization. K(@ht ) is then an approximation of the inverseof the space-time integral operator in question. The coe�cients are thereforethe result of an elliptic BEM performed for a certain number of complex fre-quencies �(�)h , where � runs through the nodes of some quadrature rule on a29



small circle in the complex plane. This method promises to be very e�cient,in particular since it allows to combine some of the recently developped so-phisticated BEM for elliptic problems with well-known high order methods forordinary di�erential equations and fast methods for the computation of Fouriercoe�cients. How it competes, for example, with very simple direct space-timemethods using retarded potentials for the 3D wave equation, remains to beseen, however.References[1] Adolfssohn, V., Jawerth, B., Torres, R.: A boundary integral method forparabolic equations in nonsmooth domains. Preprint 1993, to appear inComm. Pure Appl. Math.[2] Antes, H.: Anwendungen der Methode der Randelemente in der Elastody-namik. Stuttgart: Teubner 1988.[3] Arnold, D. N., Noon, P. J.: Coercivity of the single layer heat potential.J. Comput. Math. 7, 100{104 (1989).[4] Bamberger, A., Ha Duong, T.: Formulation variationnelle espace-tempspour le calcul par potentiel retard�e d'une onde acoustique. Math. Meth.Appl. Sci. 8, 405{435 and 598{608 (1986).[5] Becache, E.: R�esolution par une m�ethode d'�equations int�egrales d'un prob-l�eme de di�raction d'ondes �elastiques transitoires par une �ssure. Th�esede doctorat, Universit�e Paris VI 1991.[6] Brebbia, C. A., Telles, J. C. F., Wrobel, L. C.: Boundary Element Tech-niques. Berlin: Springer-Verlag 1984.[7] Brebbia, C. A., Wrobel, L. A.: The solution of parabolic problems usingthe dual reciprocity boundary element. In: Advanced Boundary ElementMethods (T. A. Cruse, ed.), pp. 55{72. Berlin: Springer-Verlag 1988.[8] Brown, R. M.: The method of layer potentials for the heat equation inLipschitz cylinders. Amer. J. Math. 111, 339{379 (1989).[9] Chudinovich, I. Y.: The boundary equation method in the third initialboundary value problem of the theory of elasticity.Math. Meth. Appl. Sci.16, 203{227 (1993). 30
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