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Abstract

We study approximation errors for thie-version of Necelec edge elements on anisotrop-
ically refined meshes in polyhedra. Both tetrahedral and hexahedral elements are consid-
ered, and the emphasis is on obtaining optimal convergence rates in the H(curl) norm for
higher order elements. Two types of estimates are presented: iRtespolation error esti-
mates for functions in anisotropic weighted Sobolev spaces. Here we consider not only the
H(curl)-conforming Necélec elements, but also the H(div)-conforming Raviart-Thomas ele-
ments which appear naturally in the discrete version of the de Rham complex. Our technique
is to transport error estimates from the reference element to the physical element via highly
anisotropic coordinate transformations. SecoBdlerkin error estimates for the standard
H(curl) approximation of time harmonic Maxwell equations. Here we use the anisotropic
weighted Sobolev regularity of the solution on domains with three-dimensional edges and
corners. We also prove the discrete compactness property needed for the convergence of the
Maxwell eigenvalue problem. Our results generalize those of [40] to the case of polyhedral
corners and higher order elements.

1 Introduction

Let Q be a three-dimensional bounded domain filled with an isotropic, homogeneous material
whose magnetic permeability and electric permittivity are given by positive constaatsl ¢ .
In this work, we are interested in the approximation of solutions of the time-harmonic Maxwell
equations inQ) by finite elements, in the situation whefe is a Lipschitz polyhedron. Such a
situation is very natural from the practical point of view, but is the cause of important difficulties,
and even sometimes obstructions to a converging approximation. The main reason for this is the
very poor regularity of solutions whef? has non-convex edges (and corners).

Let A be a fixed non-zero complex number. The time-harmonic Maxwell equations for the
electric field can be written as:

curlg tcurlu—deu=f Q ()
uxn=0 0. (2)

Here f is the current density which we assume to belong1(2) and to satisfydiv f = 0.

Note that when\ has a positive real part, (1) corresponds to the problem of electromagnetic
wave propagation in a dielectric conducting (where C \ R) or non-conducting (when € R)
medium. When the real part of is negative, the problem (1) can be seen as the stationary problem
which has to be solved at each time step of the implicit time discretization of the electromagnetic
time-domain wave problem in a dielectric medium (see, e.qg., [20])



The corresponding variational spaceis Hy(curl, 2) defined as
Ho(curl, Q) := {u € L*(Q) : curlu € L*(Q), u x n|,, =0},
endowed with the natural graph norm:
Jallx = [lull2(q) + [l curluf[2(q).

A classical variational formulation of problem (1)-(2) is:!
Find u € Hp(curl, Q) such that:

/curlu-curlv—)\u-v = /f-v Vv € Hyp(curl, 2). (3)
Q Q

The following theorem is now well known ([37], [18]):

Theorem 1.1 The problem (3) is well-posed for all A € C except for A belonging to a non-
negative increasing sequence of eigenvalues {)\j}j Ao = 0, A\j < Ajr1. Moreover, all
positive eigenval ues have finite multiplicity.

eN’

Thus, for A ¢ {)\j}j N wearein the standard framework for well-posed variational problems.
Such problems can in principle be approached by sequences of Galerkin approximations. But,
when X ispositive, ageneric difficulty istheinfinite dimensional kernel (the eigenvalue \q), and
this adds to the problem of the low regularity that we mentioned at the beginning: When €2 has
non-convex edges (and corners), in general u isnot evenin H!(Q), see (9, 21].

We know two main strategies to overcome these two categories of difficulties. (i) The use
of special families of elements satisfying specific commuting diagram properties and the discrete
compactness property, see [35], [10], [16], (ii) The regularization with weight, see [22, 25].

In this paper, we address strategy (i), which is widely spread in practice, with the families of
NEDELEC edge elements, see [38], [20], [3]. Because of the poor regularity of the solution u, the
convergence rate is very low, and we loose all benefit of the use of higher degree elements.

In polygons, and for standard operators like the Laplacian, algebraic refinement towards the
corners is a remedy and restores the optimal rate of convergence. Such a method makes use of
shape-regular elements the size of which is adapted to the region were they are situated, without
enlarging the total number of elements, and keeping the assumption that the mesh is regular. The
pioneering work in this direction is[8] (see[43] for alist on references on the subject).

Now, in three dimensional domains, the refinement has to be performed towards edges and
corners, which is much more difficult to do. The possibility of using anisotropic elements can
make the design of the mesh easier, lower the number of elements and take advantage of the best
regularity properties of the solution: In fact solutions of problems like the Dirichlet problem for
the Laplace operator have more regularity in the direction of the edges than transversally to them.

The literature on anisotropic finite elements is nowadays rich and split basically into two cat-
egories: (i) the analysis of approximation properties of such elements for “regular” solutions, but
under minimal requirements on the mesh (see [36], [2], [29], [1]); (ii) the analysis of approxima-
tion properties of “singular” solutions on suitably designed meshes, and with the aim of recovering
algebraic convergence for finite elements of any order. This approach goes back to [8] and was
developed in dimension three for low order Lagrangian finite elements in [4] (see aso [7]), and

1We assume without restriction that ey = 1.



partially extended to low order finite element approximation for vector problems in [30], [40]
under restrictive assumptions on the geometry of the polyhedron €.

In this paper, we adopt the second point of view and combine the idea of anisotropic refined
meshes with the use of edge elements to design algebraically optima Galerkin methods for the
electric Maxwell solution u, in the sense of the following definition:

Definition 1.2 Let { X}, } e beafamily of finite element spaces, X, C Hy(curl, §2), character-
ized by afamily of triangulations {.7, } e With h — 0, adegree k for the spaces of polynomials
and a set of degrees of freedom D. We assume that 0 is the only accumulation point of h and
that the number of degrees of freedom dim X}, is O(h~3).

We say that the Galerkin method based on the family { X} },cy isalgebraically optimal of degree
k if the Galerkin projection u, € X;, of u satisfiesfor sufficiently regular right hand side:

lu—uy|x < Cph*

where C}, isaconstant depending only on % . Interms of the number of degrees of freedom N,
thismeans: |u — uy|x < CLN"F/3, O

In this paper, the finite element spaces X, are realized by taking the tetrahedral or hexahedral
edge elementsof order k&, k =1,2,...

The paper is structured in such away that the different steps of a Galerkin error estimate are as
clearly separated as possible. The plan isasfollows: In Section 2, we consider only the reference
element K . We recall the definitions of the reference spaces and degrees of freedom and prove
interpolation error estimates, some of them new, in particular for tetrahedral e ements, where we
make use of the commuting diagram property.

In Section 3, we consider individual physical elements K. We define anisotropic elements
by the introduction of admissible mappings, compatible with the Piola transformation, and we
prove elementwise estimates for the projection operators. It is worth noting that, in contrast with
anisotropic hexahedra where they are optimal, the local approximation properties of the edge-
element interpolation operator are somewhat less satisfactory for anisotropic tetrahedra. This is
due to the fact that, in the case of tetrahedra, the degrees of freedom have no tensor product struc-
ture and generate interpol ation operators which do not commute with the projections on cartesian
coordinates, which results in the appearance of aspect ratios in the estimates.

In Section 4 we state regularity results in anisotropic weighted spaces for our solution u inthe
form of a decomposition u = uy + V¢ with amore regular ug. In Section 5, we formulate the
assumptions on the family of meshes {.7, } .y, and we prove global interpolation error estimates.
These imply the algebraic optimality under the condition that there holds a Céa-type estimate for
our problem: i.e. that ||u — uyl|x S infy,cx, [[u — vp||x . In Section 6, we investigate the
questions of over-refinement of the mesh and of piecewise heterogeneous materials. We prove
generalization of the results of the previous section.

The Céa-type estimate holds when the variational formulation (3) is based on a strongly coer-
cive bilinear formon X , which isthe case as soon as A isnot a positive real number. When X is
positive, but different from the Maxwell eigenvalules ), the obtention of the Céa-type estimate
is subject to the validity of a discrete compactness property. The possibility of a correct approx-
imation of eigenvalues is subject to the same condition. We investigate this discrete compactness
property in Section 7. We prove it for hexahedral elements of any degree and for tetrahedral el-
ements of lowest order 1. We rely on a splitting of the fieldsin ug + V¢ and we use results of
algebraic optimality for scalar interpolants[5, 7]. Finally, we draw conclusionsin Section 8.

3



2 Edgeeements

In this section we recall the definitions of the reference polynomia spaces on a tetrahedral or
an hexahedral element, together with their associated degrees of freedom, in relation with the
commuting diagram property. The reference hexahedral element K isacubeand the spaces and
degrees of freedom have atensor product structure and, as a consequence, the projection operator
isdiagonal in the canonical basis. Such features do not hold for tetrahedrain general, but we prove
in this section that, when restricted to subspaces of gradient fields or curl fields, the projection
operators act componentwise. This fact will help for estimates on anisotropic elements, see §3.2
and 3.3.

2.1 Edgee€eementson thereference element: definitions

We denote by (71,72, 73) = X the coordinatesin R? and by €;, €, and €3 the canonical basis
in R?, sothat X = Z,€; + 262 + Z3€3. The reference element K iseither the cube 10,13 or
the tetrahedron {(Z1, 72, 73) €]0,1[2 : 1 + 72 + @3 < 1}.

In the sequel, P, denotes the space of polynomials of degree < k and P, stands for its
subspace of homogeneous polynomials of degree %, whereas Q; ;1. is the space of polynomials
of partial degrees < 7, 5 and k inthethreevariables z;, 7o and T3 respectively.

The commuting diagram property is related to three families of finite elements, P, for the
approximation of potentials or divergences, N}, for the approximation of the electric fields and
Ry, for the approximation of their curls (magnetic fields):

1. Standard finite e ements:

{ Py when K isatetrahedron
k pu—

Qe k when K isacube.

On Py, we denote by 7 the interpolation operator associated to the degrees of freedom:
(i) values at the vertices,

(ii) edge moments of order < k& — 2,

(iii) face moments of order < k — 3 (tetrahedron) or < k — 2 (cube),

(iv) volume moments of order < k — 4 (tetrahedron) or < k& — 2 (cube).

In addition to the interpolation projector 7 we also consider the L? projection 7* onto the
same space Py, .

2. First Nedélec family of edge elements (introduced in [39]):

P oP_ xX when K is atetrahedron
Nk _ { k—1 k—1 - (4)

Qr—1,kk X Qri—16 X Qurr—1  When K isacube.

The following degrees of freedom constitute unisolvent setson N, :

For the reference tetrahedron:
L [(w-T)qde VqgePy_i(e) Veedgeof K
2. [((wxmn)-qdf VqeP} ,(f) V f face of K (5)
3. [pw-qd% Vqe P} ,(K).



For the reference cube:
L [(w-7)gde VqeP,_1(e) Veedgeof K
2. [{(wxn)-qdf  Vae (Qu-2p-1x Q-14-2)(f) V[ faceof K

3. [pw-qdx Va € (Quoth—2k-2 X Qr_gp_1-2 X Qk—2,k—2,k—1)(k)-
(6)
We denote by 11 the associated interpolation operator.

3. Raviart-Thomas finite elements (first introduced in [41], [42], see also [31]):

» P} | @ Pp X for the reference tetrahedron,
k pu—
Qrje—1k-1 X Qr—1 k-1 X Qr—1k—1,k for the reference cube.

The associated degrees of freedom for the reference tetrahedron are:

L [;(w-n)gdf  VqePyi(f) Vffaceof K

- . )
2. [pw-qdx VaqeP; ,(K);

For the reference cube:
1. ff(w-n)qde Vg€ Qr_1r-1(f) vV f faceof K

2. [pw-qdx Vaq e (Quozp—1,o-1 X Qpo1,p—2,k-1 X Qkfl,kfl,k72)([?)-
)

We denote by R the associated interpolation operator.
It is well known that these elements share the following important property (see e.g., [33],
[34], and also [12]).

Theorem 2.1 Let W' (curl, K) = {w € W'?(K) : curlw € W'(K)} and
WP (div, K) = {w € W'?(K) : divw € W'P(K)}.

Let p > 2. Thefollowing diagram commutes (and all operators are continuous):

W2(K) vV, WhP(curl, K) Wl wir(giv, ) 4V 1r(K)

|7 | I IR | 7

Py v Ni curl Ry div p,

— —

2.2 Propertiesof the projection operator for edge elements

This section and the following one are devoted to the properties of II and R on the reference
tetrahedron. We prove that there exist projection operators I, and R, onthe subspace ]P’zf1 of
N} and R, which (i) are diagonal in the canonical basis, (ii) coincide with ﬁ7T and R, onthe
gradients and the curls respectively. Moreover, these operators are used to provide non-standard
Bramble-Hilbert estimates which will be useful later.

Thetetrahedron K has four faces and six edges. We agree to denote by f; its face with outer
normal —e;, and by e; itsedgeadong €;,for i = 1,2, 3.



Lemma22 Let K bethe reference tetrahedron. Let & > 1.
(i) The degrees of freedom

1. fei(v-/e\i)qde Vg€ Pr_q1(e;) i=1,2,3
2. [ (v-@)qdf  VeePio(f) i=123, j#i (10)
3. [z(v-8)qdx  VqePy3(K) i=123

are unisolvent on Pz_l(f() and define a projector 1T, on W'*(K), p > 2.
(i) The operator Il is diagonal inthe basis (e1,€2,€3),i.e.
3 o~ o~
VV = Zvjéj, HW(UZ‘/P:Z‘) = (Hﬂv)z‘/e\i, 1= 1, 2, 3.
j=1
Remark 2.3 The point (ii) can be formulated equivalently by asserting that the coordinate projec-

tions 7; : Z?Zl v;€; — v;8; commute with TI;, for i = 1,2, 3. O

Proof: (i) The number of degrees of freedomin (10) is 3(k + k(k — 1) + gk(k — 1)(k — 2))
which is equa to 3(%k(k + 1)(k 4+ 2)) which isthe dimension of IP’%_I(IA() . To prove that these

degrees of freedom are unisolvent, it suffices to prove that if v belongs to szl(f{ ) and has al
its degrees (10) zero, then v = 0. Let v; bethefirst component v - €; of v. We have

1. fe1 vigde=0 VqeP,_1(er)
2. ffj vigdf=0 Vg€ Proa(f;) Vj=23

3. [ruiqdx=0  VqeP_3(K).
Condition 1. with ¢ = vlyel, gives that 01\61 = 0. Condition 2. with ¢ = 0yv1 gives after
integration by parts

/vf (ng, -€) df =0, /vf (ny, -&) df =0, (11)
Ofs Of2

where ny; denotes the outer normal to the face f; inthe planeof f;. Call ey, the only edge of
K belonging to 0 f; which does not coincide with e; forany i = 1,2,3. Then (11) implies that
vy = 0 on ey, and ey, . Condition 2. with ¢ = 9yvy implies [, v¥(ny, <€) df = 0, which
means v; = 0 on ez . Again, using ¢ = d3v1 , we have faf2 v%(an -e3) df =0, whichimplies
v = 0 on e3. Finaly, testing with ¢ = d%v; and ¢ = 93v; on f3, and with ¢ = d%v; and
q = 03v; on fo, wededuce easily that v; =0 on f» and f5.

Letnow JA;, i = 1,2, 3,4 bethe barycentric coordinates associated to K . Then, since v =0
on fy and f3,thereexistsay € }P’k_g(f() suchthat v1 = A3\27. Choosing ¢ = v in Condition
3. weobtain: [ A3)o|1|?dX = 0, which implies ¢ = 0. Therefore v; = 0 and, of course, we
obtainin the sameway that v; =0, i = 2, 3.

(i) We set Tl (v:€;) = ; With @, € P2_ | (K). By (10) @; = (i1, pia, piz) Verifies:

fej wijqde=0 Vq € Pr_i(e))
forevery j, j #i: Jr,eijadf =0 VgePyo(fe) j#L,
ff{(pl]qdizo VqEPk_g(K)
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Thisimpliesthat ¢;; for j # i verifies k + k(k — 1) + tk(k — 1)(k — 2) constraints which
are independent since (10) are unisolvent degrees of freedom. Since ¢;; € Pk,l(f( ) and the
dimensionof P,_; (K) isequal to %k(kz+1)(kz+2) , 1.e. tothe number of independent constraints,
pij = 0 forall j +# i. We have proved that II,; is diagonal. O

Proposition 2.4 Let K be the reference tetrahedron. The interpolation operator Il coincides
with T, on W'? N ker{curl}.

Proof:  Let v € W' Nker{curl}. There exists ¢ € W>?(K) suchthat Vg = v. Then
the commuting diagram property yields that [lv = VAq. Since 7q € IP’k(K ), we deduce that
Iv € P?_(K). Thus, IIv = II Il v. By virtueof the following lemma, IIII = II,, . Therefore

HV—HV O

Lemma?25 Let I14 and I1p betwo projection operators H — A and H — B,with A C B,
defined by two spaces of degrees of freedom A and B with A C B. Then T4l =114.

Proof: Let w € H. The degrees of freedom in B are zero on TIzu — u. Since they contain
thoseof A, I14(Ilpu —u) =0. O

The operator II isthen split as IT = II, + (II — II,). Thisallows to obtain a non-standard
Bramble Hilbert estimate for low order edge elements N :

Lemma2.6 Let k=1 and v = (v}, vg,v3) € WHP(curl, K), p > 2, such that curlv € R3.
The following estimate holds:

oi = ()il o 2y S V0 lln i) + [l eurl vz (12)

Proof: Let v beavector field verifying the assumption of the Lemma. We have:

~ o~

vi — (Iv); = v; — (Iv); — (([v); — (Iv);). (13)

Now, by construction v — H v = b x x, for some b € R?, and curl(Hv — 1 V) =
curlIlv = curlv = 5b since IIv isaconstant vector of R3. This gives the estimate:

I(TTv); — (Tev);

HLp < HHV 7rVH|_p (R) ~ Sl CuerHLp K)

On the other hand, since II; is diagonal and reproduces constants, the standard Bramble-Hilbert
estimate, see[19], gives: R
|v; — (HWV)Z'HLP([?) N HVUZ'HLP([?)

Inserting these last two estimates into (13), we obtain (12). O

2.3 Propertiesof the projection operator for Raviart-Thomas elements

We now concentrate on the properties of the Raviart-Thomas interpolation operator.



Lemma2.7 Let K bethe reference tetrahedron. Let & > 1.

(i) The degrees of freedom
L [, (€-@)qdf VgePr1(fi) Vi=1,2,3 14
2. [z€ qdx VqeP? (K);

are unisolvent on P?_, (K) and define a projector R, on W'P(K), p > 2.
(i) The operator R, isdiagonal in the basis (e1,€e9,€3),i.e

3
VE=D ¢85,  Ra(&@) = (Ref)ie;, i=1,2,3.
=1

Proof: (i) The number of degrees of freedom in (14) is 3(3k(k + 1) + £ (k — 1k(k + 1))
whichisequal to 3(k(k + 1)(k +2)), thedimension of P} | (K). To > prove that these degrees

of freedom are unisolvent, it sufficesto provethat if £ belongsto P3| (K ) and hasall itsdegrees
(14) zero, then £ = 0. Let usfix i and let &; bethe i-th component £ - e; of £. We have

1. ffifiqdfzo VqE]P)k_l(fi) Vi=1,2,3
2. [2&qdR=0  VqeP, oK)
Condition 1. with ¢ = &Ifi gives that fi’fi = 0. Condition 2. with ¢ = 0;&; gives after
integration by parts
/v?(n-@i) df = 0.
oK
The contributions on the faces f; with j # i are zero because n - €; = 0. The contribution on
/i isdaso zero asjust proved. Therefore, since n - €; isanon-zero constant on the last face f4 of

K, wefind that &l 5, =0.We deduce that £ cancelsall Raviart-Thomas degrees of freedom (8).
Therefore € = 0.

(i) Weset R.&; = @; With @, € P3_ . By (14) @; = (@1, pia, pi3) verifies:

/gpijq:() qupk_l(fj) and /QDUQZO VqEPk_g(f?), V]#Z

fi K
Thisimpliesthat ¢;; for j # i verifies $k(k+1)(k+2) constraintswhich areindependent since
(14) are unisolvent degrees of freedom. Since ¢;; € Py_1(K) andthedimension of Pj,_;(K) is

equal to the number of independent constraints, ¢;; = 0 for all j # i. We have proved that R,
isdiagonal. O

Proposition 2.8 Let K be the reference tetrahedron. The interpolation operator R coincides
with R, on W'?(K) N Ker{div}.

Proof:  Let & besuchthat div§ = 0. Therefore £ isacurl and by the commutative diagram
property (33), div R¢ = 0. We have R = ¢ + X with o € P}_ (K) and ¢ € P, (K).
Thus

div R¢ = dive + 31 + X - Vb = divep + (k + 2)1p.
As the degree of div ¢ is k — 2, we find that ¢ = 0. Therefore R¢ € P3_ 1(A) and R¢ =
RwRﬁ. By Lemma 2.5 we deduce that Rg = Rﬂg. O
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The analogue Lemmarto 2.6 for Raviart-Thomas elements is the following:

Lemma29 Let k = 1, and & = (&1, &, &) € W'P(div, K), p > 2. The following estimate
holds:

ng - (EE)iHLP([?) rg ”V@HLP(IA() + H diVSHLQ(f()' (15)
Proof: Let & beavector field verifying the assumption of the Lemma. We have:
& — (R = & — (Rr&)i — ((RE)i — (Rxk)y). (16)

Now, b)/ construction ﬁfg — fzﬂg =bx,forsome b € R, and div(fzé - ﬁﬁé) = div }ARE =
3b since R:§ is a constant vector of R3. Finaly, by Theorem 2.1, div R¢ = 7*div€, thus
I divR&HU,(k) < |l div RE”L?(}?) < div£||Lp(f() . This gives the estimate:

H(Eé)l - (EWS)iHLp(f{) < Hﬁé - ﬁﬂé”LP(K) S diVE”Lp(f()'

On the other hand, since }ABW is diagonal and reproduces constants, the Bramble-Hilbert estimate
gives: R

Hél - (RWE)iHLP(f() 5 vaiHLp(f()-
Inserting these last two estimates into (16), we obtain (15). O

Remark 2.10 Lemma 2.9 seems more powerful than Lemma 2.6 since it is valid for any vector
field £ € W'?(div, K), while Lemma 2.6 holds only for vectors with constant curl. Thisis a
conseguence of the fact that, along the vertical arrows of the commuting diagramin Theorem 2.1,
the only projection operator whichisstablein L? is 7*. On the other hand, the same techniques
can not be applied for £ > 2 sincein this case II,v and ﬁwg are not curl and divergence free
respectively.

3 Anisotropic elementwise estimates

Inthis section we concentrate on thelocal approximation properties of edge elements on aphysical
element K obtained by an affine transformation from areference cube or tetrahedron K .

More precisely, in Section 3.1 we fix our requirements on the mapping ®x from K tothe
physical elements. We authorize K to be stretched in one or two directions, but we need to
guarantee some “non-degeneracy” conditions which are discussed. Next, in Sections 3.2 and 3.3
we prove local LP(K') error estimates for the interpolation operator in the physical element for
the electric field and its curl.

3.1 Mappingto the physical element

Let K be the generic element of a mesh .7, in afamily (7,)ne, and K be the reference

element. We assume that every K is obtained from K by means of an affine and invertible
mapping & : K — K. Let us recal the induced mappings for the spaces in the deRham
commuting diagram, cf Theorem 2.1:

e Thescalar functions ¢ in H 1(IA( ) and in the reference space P, are mapped simply by

qo®r =4q.



e Thevector fields v in H(curl, IA() and N, are mapped as 1-forms:

V=Dd}(vodg), ie vodx=Dd'V. (17)

e The vector fieIdsE in H(div,f{ ) and R are mapped as 2-forms, i.e., by means of the
Piolamapping [12], [31]:

£o Py = (det DOg) ™ DD E. (18)

These choices ensure that the commuting diagram property formulated in Theorem 2.1 till holds
for the corresponding space on the physical domains (see [34] and references therein).

Related to its situation in 2 (namely the proximity of an edge), the element K is associated
with alocal system of Cartesian coordinates x* = (24, 2 25) and &k : X +— x¥ . Thetem-
plate for our anisotropic elementsis obtained by the mapping ® x (71, T2, 73) = (2, 2L, 25) =
(d1Z1,da7, d3s), Where d;, do and d3 arethe characteristic dimensionsof K .

In general, the mapping ® ;- can berepresented as ® X = DP X + cx and we require that
the matrix D®  satisfies the assumption:

Assumption 1 Forany h € h andany K € .7, there exists a diagonal scaling matrix

d 0 0
Hg=(0 do O
0 0 ds

and two matrices By and By which, together with their inverses, are bounded independently of
h and K, such that:

D®y = Hi Bx = By Hy. (19)

Remark 3.1 (i) In Assumption 1, the uniform boundedness condition on By and B[‘(l implies
the maximum angle condition investigated in [36], [29] and also the regular vertex condition used
in [1] to obtain anisotropic estimates for Raviart-Thomas el ements.

(ii) Assumption 1 implies conditions (3.2-3.3) in [7].

(iii) Aswehave By = H;BKHK , therequirement | B || < C' combined with the boundedness
of B can beinterpreted asfollows: if the element is“ long” in one direction, then, this direction
has to be “ fairly orthogonal” to the other two. The same condition has been indirectly used in
[40] and [30].

In the following two paragraphs, we give estimates for the LP norm of the local interpolation
errors for the Nédélec interpolation operator 11 and for the Raviart-Thomas interpolation oper-
ator Ry when acting on curls. This applies to the electric and magnetic fields in a natural way.
The upper bounds are weighted semi-norms.

3.2 Estimatesfor thelocal Nédéec interpolation operator Ilx

We denote by Aﬁ the corresponding Nédé ec interpolation operator on the reference element K.
The operator TI matches the degrees of freedom (5) or (6) between the interpolated field and its
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interpolant. Let v € C°°(R3)3, and denote by I1x the physical interpolant on the generic physical
element K . Thetransport relation is similar to (17):

(lgv) o @ = DO TIV. (20)
We start with estimates by first order derivatives.

Proposition 3.2 Let £ > 1 and p > 2. Under Assumption 1, there hold the estimates:
3 3
. djdy
= WP (K): v —Tevire S —
(i) Forany v = (v1,v2,v3) € (K): [[v = Hgvllew) S 2.2 in,
3

(ii) I the interpol ation operator II is diagonal: v —Tgvek) S ng 100V |Lr (k) -
=1

- 1005l Lo (k) -

Remark 3.3 The condition p > 2 is necessary because the interpolation operator 11 is continu-
ous from WLP(K) — A onlyfor p > 2, see[3].

Proof: (i) According to Assumption 1, we have ]D<I>;<1| < (min; d;)~*. With (20) this alows
to estimate:

/’V—HKV’de = ’detD(I)K’/’VOq)K—(HKV)O(I)K‘pdﬁ
K K

= |det D®| / DO TV (R) — DO TTIV(R) [P AR 1)
R

1 o Fap ae

Using now the Bramble-Hilbert estimate and the fact that I1 leaves constants unchanged, we have:

/\v _fivpdz < / TPz, p> 2. 22)
K K
Since v = D® (v o ®x), the derivation rule yields the relation on K:

V¥ = DO ((Vv) 0 By ) DD

Here we have used the matrix notation (with O = 0z, etc...)

0101 Ogvy O30 O1v; Ov1 031
Vv = 0109 Doy 0309 and Vv = |0dwvy 0Oy J3v9
0103 O3 OsU3 O1vs Oquz 033

Using now the decomposition D® . = Hi B , werewrite

V¥ = B Hg ((Vv) 0 @) Hx Bic. (23)

11



We use thisformulaand (22) in (21) to obtain:

» ]detHK\ »
]v—HKv] dx < \V P dx

X (24)

(min d;)?

AN

/ |Hi (Vv) Hg|P dx
K

3 3
522 e L /ydgam dx,

which ends the proof of (i).

(if) Let ussupposethat the interpolation operator II isdiagonal. Inthiscase, for v = (D1, 02,03) "
and v; = v;¢e; , we have (Hv)lel HvZ Therefore

—109; = (0 — (I9,):)@;

This fact can be used to improve (21) in the following way: Combining (20) with the factorization
D®y = By Hy we obtain the relation between I and Ig:

(Mgv) o i = BT H IV (25)

Thisgives

/yv—HKvypdx < ]detHK]/|H;{1§(§)—Hl}lﬁG(i)V’dﬁ

3
< | det H| Z / — [I9;(%)) [P dx 26)

N>

— 1Iv;|P dx.

3
S ]detHK Z/

N>

Then we can use the Bramble-Hilbert estimate on each v;. Finally we have to come back to K .
Let v; bethefield transported from v;, i.e. v; = D@}(vi o ®g). Notethat v;, in generdl, is
not paralel to €;. However, the vector

\vfi = BI—EVZ = HI_(IGZ o q)l_(l
has, like v;, only its 7 -th component non-zero. Therefore, writing

= Hg ((V¥;) o @) Hx B

12



instead of (23), we obtain

3
det H ~
/V—HKv]pdxgz%/W%]pdi
K i=1 i =

/’HK VVZ HKBK‘de

, " (27)
Z p/|dl (Vv;) Hi |P dx
=1 K
3
< Z/|dgagBKV Pdx < Z/ |deOpv|P dx,
i=1 =17
which ends the proof of (ii). O

Finally, when the assumptions of Lemma 2.6 are fulfilled, (22) can be replaced by (12). We
obtain the following Proposition:

Proposition 3.4 Let k = 1 and that thetriple (di, d2, d3) verifies

dy d;j - o
Smaxd; forall distinct 7, 7,7.
i J

Let v € WhP(curl, K), p > 2, be a vector field with constant curl. Then:
3
IV =TV S de10eviie ) + (max d;) || curl Ve (). (28)
=1

Proof: Similarly asin (26), we compute:

/|v_nKv\pdx < \detHK\/\H Y(®) - HMi9®)P dz

K
3 (29)
1
< | det Hg| / > F(THEP + urv @) oz
Thisimplies:
3
/]v—HKv|pdx < Z/|dg@gv|pdx+ Z /|d d¢(0jve — Opv;)|P dx
= i (min; d;)

(30)

< Z/|dg@gv]p dx + (mjaxdj)pH curl v||P, .

9 < max; d; forall distinct i,j,¢. O

i

. . . d
where in the last line we have used the assumption —~

13



Let usdenote by d the three dimensions (d;, dz2, d3) and by d* = dj'd5*ds® . The genera
estimates involving semi-norms of higher degree are:

Proposition35 Let / > 2, k> /¢ and p > 2. Under Assumption 1, there hold the estimates:

(i) Forany v € W(K): [|v — g vl S Z — Z d* [|0%v; L (k) -
— ) z —¢
(ii) If the interpolation operator II isdiagonal: ||v — HKVHLP K) S Z d [|0%V||Le (k)
|a|=£

Proof: By the Bramble-Hilbert estimate, we know that (22) can be replaced by
/ v —Iv[Pdx < / Z 0%V [P dx. (31)
|ox|=t
Following exactly the same argument as before, we then have instead of (24) :
‘ det HK|

> > / 0%V [P dx
mmd

/V—HKv]pdx<
o=k &

det H
N‘ ‘ dK‘ > /Z]d A% (9%0)) o b 5.
mln

lel=k &

Whence estimate (i). The proof of (ii) issimilar. O

3.3 Local Raviart-Thomasinterpolation estimate for a curl

In order to estimate theterm [}, | curl(v — IIxv)|Pdx of theinterpolation error, we make use of
the commuting diagram property Theorem 2.1. Let Ry be the local Raviart-Thomas interpolant
obtained by means of (18):

Ri&o®y = (det DB ) ' DOy RE (32)
Theorem 2.1 says that
curlllxv = Ri curlv. (33)
We then have to provide boundsin L?(K) for the quantity &€ — Rx &, with € = curlv.

Proposition 3.6 Let £ > 1, k > ¢ and p > 2. Under Assumption 1, for any ¢ € WP(K) with
div € = 0 there hold the estimates:

1€ = Ricklirrey S D d* [10%Ellw i) - (34)

lox|=¢

Proof: Letusassumethat £ = 1. Thereations (18) and (32) together with the factorization
BrxHg of DOk ylddS

/\g — Ri&lP dx < | det HKH’/ |Hy€ — Hy REIP dX.

14



Using Lemma 2.7 and Proposition 2.8, and since R, keeps constants unchanged, we obtain

3
/|§ — RgéPdx < |detHK|1—P/Zd§ €5 — (Rr£),[P dx
K r 771
5 (35)
< |detHK|1—P/Zd§vgj|Pd§<.

~ 7=1
K]

We proceed asin the proof of Proposition 3.2, (ii). Using both factorizations of D® gk , we obtain
VE = (det DPg) DDy VE o By DBy = (det Dy ) Hi' B! VE o O HyeBrc.
Thus:

3 3
[ @S 14 a0 0 Bl | det DB

/ € — RictlP dx < |det Hy|'™”
> Joj=1 =1

5 K (36)
S [13- dograx.
Kk =1
which ends the proof when ¢ = 1. The general caseis similar. O

For non divergence free fields, instead of (34) estimates similar to those of Proposition 3.5 (i)
would be obtained, i.e. with additional factors of the type miij; Z on the right hand side.

When k& = 1, abetter estimate can be obtained starting from Lemma 2.9. We state here the
following Proposition with the aim of showing that resultsin [1] are recovered by our technique.

Proposition 3.7 Let k =1 and ¢ € W'P(div, K), p > 2. We have:

3

1€ — Ricllrey S de 106 e (i) + (m?de) | div &l e (x)- (37)
=1

Proof: We estimate:

3
/ € — Rl dx < |det Hy |17 / SO @, — (RE)[P ax
J .

=1

mo (39)
S JdetHic 7 [ 30 dH(GEL + |GvEP) d

<=1

K

Using that (TRIE = |det D®g|div & o P, and the same reasoning asin (36), we obtain:

3
[ 16 Rielrax s [ S dilowgl dx + (x| div el (39
K K =1

15



4 Regularity resultsfor the electric field in a polyhedral domain

In order to provide regularity results for the solution of problem (1) and also to define our require-
ments on the mesh, we are going to identify subregions of the domain €2 governed by a corner
c or an edge e or both. We refer to [32] and [22] for the introduction of similar subregions and
coordinates.

Wedenoteby & and ¥ the set of edges and corners of the polyhedron 2. Moreover for every
c € %, wedenote by &, the set of edges e such that ¢ C €, and for every c, by %, the set of
two corners which are endpointsof e. Forany c € ¥ and e € &, define:

re(x) = dist(x,e), 7re(x) = dist(x,c) x € Q. (40)

Letnow ¢ € ¥ and B,(c) be aball centered in ¢ with radius » which is not intersecting
any other corner of 2. We denote by G. C S? the spherical polygonal domain corresponding
to 0B, (c) N 2. Thereis abijection between the vertices ye of G, and the edges e in & . For
every e € &, let 7'(xe) beaneighborhood of y. in G, suchthat 7'(y.) doesnot contain any
other vertex of G.

We introduce spherical coordinates (r¢,9.), ¥ € S? associated to the corner c. Thisalows
to define:

n/ec = {(7"0719(:)7 re<e, Ue¢€ %(§e)}7 (41)
qyco ={(re,¥¢), re <&, Ve € Ge\ (Uees. V' (¥e))}

where ¢ € R, issmall enough to ensure that no other corner except ¢ belongsto 7;” and 7°.
Besides the neighborhoods 7.° and 7, weintroduce 7 such that ¥ does not contain any
other edge than e, nor any corner and such that € iscontained in 70 U (eeq, 7<) - And finaly

i CEGe '€
choose 7° such that 70 contains no edge and no corner and such that
Q=7ulJ7uy (“ﬂ;’u U “/)
ecd ce? ecdée

Inthe regions 7Y and 7.° associated with the edge e we choose alocal system of Cartesian
coordinates x® = (z%, %, z§) in which the direction of the edge is =§. The subscript L will
aways denote the directions transverse to the edge: For example, if « isaderivation multi-index,
a = (o ,a3) means o derivativesin (x5, x§) and a3 in z§. Then we define the space:

M7P(Q)) 1= {u CLP(Q) : Vel <m 8% e LP(¥Y),

Vece® Tzﬂa‘@o‘u e LP(72) (42)

Vee & rifletlgey e LP(#0) and rgriHl*lgoy e Lp(w;)}.
We denote by M”"?(Q) the corresponding space of vector-valued functions, i.e. M7 (€2)?.

Theorem 4.1 There exists 5o > 0 and 6o > 0 so that the following regularity results holds
for the solutions u of (3) when ) is not an eigenvalue of this problem. If f is C>(Q) and
divergence-free, there exists a potential ¢ € H{(2) such that for all p € [2,2 + dg), for all

B € (0,58q) andall m > 0:

u=ug+Vg with uge M () and ¢ € M"7(Q). (43)
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As a consequence of this splitting, u belongs to a anisotropic space in which an improved
regularity for the tangential component along the edges holds. We define

ﬁfy’”’(Q) = {u € MI"P(Q) : Ve € &, andwithue 3 the component of u along e,
V\a| <m T;1+7+|QL\8aue73 c Lp(a/QO) (44)

1 -1
re g +7+‘a“8°‘ue73 € Lp(”ﬁe‘:)}.

Note that we have the inclusions M (Q) ¢ My""(Q) ¢ MI*P(Q) and that the operator V

is continuous from M:”‘fll’p (Q) into MJ"P(Q). If we combine this with the continuity of the

operator curl : M™P ,(Q) — M™;?(Q), we obtain

Corollary 4.2 Under the conditions of Theorem 4.1, curlu = curluy belongsto M™7(€).
Moreover u € M”7(9).

The proof of the theorem is beyond the scope of this paper. Actually it is not an easy conse-
guence of the known theory about Maxwell singularities [21] and it requires the use of sophisti-
cated techniques from the theory of singularities for elliptic problems[26]. Further details can be
found in [14] which is announcing the general theory for both the L aplace and Maxwell operators.
Moreover, the statement could be improved regarding the requirements on the right hand side f;
but these results are not needed here and the related theory is still under investigation.

5 Convergence Analysisfor the Galerkin method

In this section, we introduce the discretization of the problem (3) by anisotropically refined edge
elements, and provide a-priori estimates for the associated Galerkin error.

This analysis requires some preparation: in Section 5.1 we set notations and assumptions for
the definition of anisotropic refined meshes, in Section 5.2 we use the local estimates obtained in
Section 3 in order to prove agebraic convergence for the best approximation error. These results
allow to conclude agebraic optimality for the Galerkin problem when the underlying continuous
problem is strongly coercive (cf (69)). When this is not the case, some additional results are
needed to conclude convergence of the Galerkin scheme: We need to prove the so-called discrete
compactness property [35]. This is investigated in Section 7. In Section 6 we present some
extensions of the present theory.

5.1 Anisotropically refined meshes

Let {7}, }rep beafamily of meshes (hexahedral or tetrahedral) which verifies Assumption 1, §3.1.
For each h € b fixed, we define subsets of .7}, :

L, denotesthe set of elements K € .7, suchthat K N % # (), i.e., onecorner of K coincides
with one corner of 2. Notethat #Ly ~ #% ;

L, denotes the set of elements K € .7, suchthat K N{e, ec &} # (), i.e, K hasoneedge
or one corner sitting on an edge or a corner of 2. Notethat £y C £y .

L5 isthe set of elements K € .7, \ £; which share an edge or acorner witha K € Ly ;
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Te, k = Milxck re(x) aNd re g = mingeg 7e(x) VK ¢ Ly
A discrete version of the family of neighborhoods defined in Section 4 is defined as:

POh) ={K € : Kn7°#0},

(h)
YOk = {K € Ty : K70 #0},
YO = {K € T : K70 £0},
YEh) = {K € Ty : KN 7S #0}.

In order to provide an algebraically optimal (in the sense of Definition 1.2) edge element
method, we now have to give precise bounds for the possible choices of d = (d,ds,ds) for
elements in different region of the mesh, i.e., provide a set of assumptions that .7, hasto verify
once k and the set of degrees of freedom N}, are fixed. In the edge regions 7(h), ¥ (h) the
local system of Cartesian coordinates x’ is chosen equal to the system x© introduced in Section
4. In the other regions, where the elements will be supposed isotropic, any system of Cartesian
coordinates can be chosen.

In order to prove algebraic convergence, we need the following assumption on the mesh:

Assumption 2, 3 Refinement for fixed £ € N and 8 € (0,1):

K e 79(h)\ Ly di ~ dy ~ ds ~ hri}{ﬁ/k

K € 79(h)\ L1 d1:d2:hr‘;§/k d3 ~h

K e g(h)\ Ly di = dy =~ h?“(l;KB/k ds ~ hri}g/k
K€£0 dlﬁdgﬁdg’ihk/ﬁ

K e 79(h)nLy dy ~ dy ~ h*/P ds ~h

K e VE(h)NLi\ Lo di~dy~hk/?P ds’:hriTKmk
KE%O(h) dlﬁdgﬁdgrgh.

For elements belonging to intersectionsof 79(h), ¥2(h), ¥2(h), ¥<(h) any of the admissible
strategies can be adopted since in such regions, they are equivalent to each other. The constants
hidden in the symbols < and ~ are uniform on the whole family {.7, } nep .

Proposition 5.1 The number of elements of the mesh .7, in a family satisfying Assumption 2, 3
is O(h™3).

This proposition is a consequence of its 1D version, that we state in the following way (and
where 7 correspondsto k/f3):

Lemmab.2 Let 7 > 1. Let (%)n be a sequence of numbers such that ¢~ < v, < ¢ for a
¢>0andall n €N, Letusfix N € N and define the two sequences (4,)  and (t,), by

51 =t = ’le_T and Vn >1: 5n+1 = ’yn_;_lN_lt}I_l/T and tny1 =ty + 6n+1' (45)

Then ty = O(l) and oy = O(Nfl).
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Proof: 1. Let usstart with the usua refinement strategy which consists of taking t,, = (n/N)"
and 9y = t1, dptr1 = tpy1 — tn. The conclusion of the lemma is satisfied for this couple of
sequences. Let us prove that (45) is satisfied. We compute that, for n > 1

-1
On1 (N_lt}l_lh) = n((1+2)7—1) =79

Itiseasy toseethat 7 < 70, < 727! foral n > 1. Therefore these sequences satisfy the
assumptions of the lemmafor ~, = ~9.

2. Let v > 0. Let usnow consider ¢, = v(n/N)™ and 01 = t1, Op+1 = tnt1 — t, . Thereholds

1
Ont1 (Nfltklﬁ) = ’71/T’72+1-

These sequences still satisfy the assumptions and the conclusion of the lemma.
3. If v, </, the sequences 6,,, t,, d,,, t,, constructed by formula (45) are such that §,, < 4,

n'® 'n

and £, <t],.Let (6,), and (t,) satisfy (45). Itiseasy to CONStruCt Ymin @Nd ymax Such that

Vn > 1, 'yfn/ihgﬂ < Yot < Ve Vot
Since the couples of sequences of type 2. satisfy the conclusion of the lemma, the same holds for
the sequences (,), and (t,), . O
5.2 Best approximation error
This section is devoted to the proof of the following theorem:

Theorem 5.3 Let the degree & > 1 be fixed. Let {ﬂh}heh be a family of meshes verifying
Assumptions 1 and 2, g for a positiveindex 3 such that 5 < 8o where g isthe parameter of
Theorem 4.1. Then, for every u verifying (43), there holds:

b fu—vallx < Ch*F < C'N7H3, (46)

where C' and C’ are constants depending on %, but noton h or N.

The proof of this theorem needs several steps which are presented in form of lemmas.
First about the relative sizes of the elementsin theregions 7.2(h), ¥2(h), VE(h).

Lemmab5.4 (Relativesizes) For all x € K, K € 7, \ L, thereholds
K e Vco(h) \ L1, re(X)~rer 2 di(~dy ~ds)

K e 72(h)\ L1, 7e(X) = Tex = di(~ ds) (47)
Ke VS (h)\ L1, re(x)rex 2 di(x~dy) and re(x)~rer 2 ds.

12

If, moreover K € Lo:

K € 72(h) N L2, 1e(x) =7k ~dy =~ WP

Ke ”Veo(h) NLy Te(X) ~Tex ~d ~ Bk/B (49)
K e I&(h)N Ly, re(x) ~ 1o ~dy ~ WP and re(x) ~ re s ~ dg ~ h¥/7.

o
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Proof: Let K € Y2(h)\ £1. By definition 7. x < re(x). We aso know that r¢(x) <
re,k + ch ri}(ﬁ/ b (c denotes a constant). We need then to prove: r¢ x + ch Ti;{ﬁ/ k S TeK -
Which is equivalent to h < rf/lﬁ i.e. to h*/? < re i, which is always the case by Assumption
2k,,8 for K € %O(h) \ L.

Since in the same region the characteristic dimensions d; are all equivalent to hri;{ﬂ/ " the
same proof yieldsthat d; < r¢ i . If, moreover, K belongsto thelayer £o, rc x coincides with
the value of r.(x) for x inandement K’ € Ly, then ro x < h*/P, which givesthat d; > re x .

For the regions 7 (h) and 7.(h), the proof is similar. O

Lemma 5.5 There exists a smooth cut-off function x; whichis 0 on £; and 1 outside £, U L5,
and which satisfies the estimates

K e 72N Lz, 0%l S T
Ker2(h) N Ly, [0%xnllses S roret! (49)

K e VS NLa, [0%nllook S o ro el
The existence of such afunction is a consequence of the estimates (48).

Lemma 5.6 The following continuity estimates hold for » € MY"?(Q2) and ¢ € MJ*P(Q):

Ixnellvmr) S llellvme (50)

Vo, |a| =1, ||(aaXh)</7H1v1;"ﬂ(Q) S H‘PHMZ“HQ) (51)

Ixrellvrmry < llellmrre)- (52)

Proof:  In order to prove (50), we prove the estimate: ||xxpllLmo(yey) S l@llLme(ye) . The

estimatesin 7 and 7 are similar.

HXh‘P”Iﬁgn»P(v;c) — Z (rosrgat)P Z 9% %y, 05 0P dx

lee|<m e [k|<e
e

< Z Z (TSSTSJ_‘i”Y)p (T’gS*CMST:L*aL)Iwak(p‘de (53

o <m K|<er e

k3, .k k
Sj Z (rrcgrel—’ﬁ)p’a <P|p dx 5 CH@H{Z;%PU/;)
lkl<m ye

The proof of the (51) and (52) follows the same line. O
From now on we adopt the notation || - ||, x to denotethe normin LP(K') or LP(K).

Lemma 5.7 (Local Estimates) Let Assumptions 1 and 2;, 3 hold true. For all K € 7, \ £; and
¢ € WEP(K) such that curl ¢ € W*P(K) , it holds:

lo=Tkelp S DX lelgen s, (54)

||curlp — curlIlx ¢

pic S Rl eurl @l ). (55)
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Proof:  We make use of the anisotropic local interpolation estimates obtained in Section 3.
The two dimensions d; and dy are always equivalent: Let d, := min{d;,d>}. We have in
any case d; < ds. Using Proposition 3.5 (i) for ¢ = (¢1, ¢2, ¢3), Wwe obtain

e —Hgel|lpx < D1+ D2+ Ds, with:

- , ds oo 56
D;= Y [d*0%illpx, i=1,2, Dz= 7, 1d%0%esllp xc- 0
=k =k

For i = 1,2 we have

Ke 2\ L1+ Dy S S [lre M geg ),

|a|=k
(57)
K e qyec(h) \£1 . D; g hk: Z ||7423(1_5/k)7"<|aalKl_ﬁ/k)aawz‘Hp,K
|a|=k
andfor i =3
K e a/e[)(h) \£1 : Ds g Bk Z HT((;‘aj"_1)(1_B/k)8ag03”p7](
et a1 9
K € nyeC(h) \El . D3 g hk‘ Z Hr((: +a3z)(1-8/ )T((JO‘L‘_ )(1-8/ )3"‘(,03 ‘p,K
|ox|=E

Now, since | | < k, for K € 7?(h) we have plotlA=B/k) o pler]=8 gng e =1A=6/k) -

r,';"l"l’ﬁ,whereasfor K € 7&(h), sinceit holds re < r¢, we have

P B/ o [08/K) & paa Jeci|=8 (L) 1=8/K), (s -DA-B/K) < | 1+ag,Jous |1

)

Moreover, any element K € (k) \ £; isregular and the estimate goes smoothly:

I = Ticllpie S 1537 Il e S 1M1l 9
|a|=k

Finaly, for K € 79(h) the estimate is standard since the element K is regular. Thus (56)-(59)
imply the local estimate (54).

The estimate (55) on the curl part is easier since the interpolation operator is diagonal — cf.
Proposition 2.8 and (34). We show it fora K € ¥ 2(h):

| curlp — curl g, k S Z |d¥0% curl ¢||p.x

|o|=E

5 hk Z H?"S?’(l_ﬂ/k)’f"eaLKl_ﬁ/lc)aa CllI'lQOHILK (60)
|a|=E

< k

~ h H CurlSOHM’i’g(K)'

The other cases go similarly, and this ends the proof. O
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Proof of Theorem 5.3. We make use of the decomposition (43) introduced in Theorem 4.1 and
apply the cut-off function in the following way:

u = {xpuo + Vxnq} + (1 — xp)uo + V(1 — xn)g (61)

and the best approximation error is estimated taking as an approximation I1*(y,ug + Vxaq),
where IT¥ denotes the global interpolation operator for edge elements of degree k. Thisimmedi-
ately implies:

inf lu—villx < @) lxauo — T (xnuo)llx

Vi
(i) + [IVxng — T*(Vxag)llx (62)
(i) 4+ [[(1 = xn)uollx + V(L — xn)allx -

We need now to estimate each term (i), (ii) and (iii) on the right hand side.

(i) Since uy belongs to Mk’p 5(€), it aso belongs to ﬁ'ﬁ’g(ﬁ), therefore, by Lemma 5.6,

Xnto € MPE(Q). Since u, aso belongs to M*114(Q), its curl is in M*%(Q). Then we
use the identity
curl ypug = Vyp X ug + xp curlug,

and Lemma 5.6 to deduce that curl x,ug € M’j’g(Q). Therefore we can apply Lemma 5.7 to
@ = xpup . Since the support of x,uy iscontainedin 2\ £;, wecansumover al K € .7, and
obtain:

o =T (enmto) x5 ¥ l[wolligis ) + Il curluoflyes 1)}

(63)

< pk
S h HUOHMIT;EZ(Q)'

(ii) Since ¢ belongsto M"*!(2), by Lemma 5.6, x,q also belongs to M™% (02), therefore

Vxnq belongsto M'j”’(Q). Sinceitscurl iszero, we can directly apply Lemmab5.7to ¢ = Vg
and obtain

[Vxng = T (Vxng)llx S A lallysm - (64)

(iii) As a conseguence of ug € Ml_’ﬁ’_B(Q) and ¢ € Ml_’g(ﬂ), the three fields (1 — xp)uo,
curl((1—xp)ug) and V(1—xz)q al belong to M%(Q). Moreover their supports are contained
in Q= Uger,ur, K - Asaconsequence of Lemma 5.8 below, we obtain immediately

10— xuollx + IV = xa)allx £ W {luoller o)+ s} (€9

The combination of the four estimates (62)-(65) gives that there exists v, € X}, such that
Hu - Vh” 5 hk{HUOHM’f{ig(Q) + ”CIHM’fBlP(Q)} (66)
The conclusion of Theorem 5.3 is now a consegquence of the Céa estimate (70). O

: = 0,
Lemma 5.8 Under Assumption 2; 5, let Qp, := Ugcp, 0, K and ¢ € MZE(Q2) . Then

14

k
lpn S PPl o)

22



Proof:  Thelayer domain ©, iscontainedin 7> U 7Y U 7. We note that, as a consequence
of Lemma5.4 and particularly (48), in €, N7 and Q;, N (72U 7°) thereholds r. < h*/# and
re < h¥/8 | respectively. Thereforefor K € £, U Ly,

FKCOD: Wl S (s00rd) Ir bl S A I lon
K COPUIE: Wl S (50078 g blse S oI lyos ey

Adding these estimates ends the proof. O

5.3 Algebraic optimality of the Galerkin approximation
Let now X; C Hy(curl, ©2) bethe edge element space generated by Ny, i.e.:
Xp={vh €Ho(curl,Q) : VK € 7, Dy (vp|, 0 D) € Ni}. (67)
The Galerkin problem associated with (3) reads. Find u;, € X}, such that:
/(curluh ~curlvy, — Auy - vp) = /f -V, Vv € Xy, (68)
Q Q

Theorem 5.9 Let u be the solution of problem (3) with A ¢ [0, +o0c[ and a regular right hand
side f. Let thedegree k£ > 1 befixed. Let {ﬂh}heh be a family of meshes verifying Assumptions
1land 2, g for a positiveindex 5 suchthat 8 < 8o where g isthe parameter of Theorem4.1.
Then, the variational problem (68) is well-posed and moreover:

|u—up|x < ChF < C'N7F/3
where C' and C’ dependon k&, butnoton h or N.

Proof:  Itisenough to provethat, if A ¢ [0,c0), the bilinear form ay : (u,v) — [,(curlu-
curlv — \u - v) isstrongly coerciveon X, i.e, thereexists a € C such that

Re (@ay(u,@)) > [lul%. (69)

Since A isnotrea > 0, we canwrite —\ intheform —\ = pei" with 6 € (—m, 7). Then,
if we choose o = ¢~%/2, we obtain the strong coercivity (69) sincethen Re « and — Re o\ are
both positive. The variational problem (68) admitsthen a unique solution. Moreover, the Céa-type
estimate:

u—u < inf |[[lu—v ) 70
=il S it fla=vallx (70

holds. Theorem 5.3 allows to conclude. O

6 Extensions
In this section we consider three different extensions for the theory presented in Section 5.2 to the

case of over-refinement meshes (so not verifying Assumption 2;, g) and for piecewise homoge-
neous materials.
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It is worth noting that in Section 6.2 and 6.3 the over-refinement we consider is different
from the tensor product hexahedral meshes of Section 6.1. Thisis an edge-corner refinement in
the sense of Assumption 2;, 5 around fictitious internal edges and corners for the convenience of
mesh design. In the case of piecewise-homogeneous materials on polyhedral partition of 2, there
appear actual internal edges and corners. In both situations, we have to revisit the decomposition
(43) in agradient and aless singular part to conclude.

6.1 Tensor product hexahedral meshes

If hexahedral elements are used in the family {ﬂh} heh” the projection operators I and R are
diagonal. Thus, thanks to Proposition 3.2 (ii), in estimates (56), the bound D3 has a similar
structureas Dy and D> :

Dy= > [[d*0%ps|lpx- (71)
|ex|=k

Thisallowsfor proving the local estimates (54)-(55) under the relaxed assumption on the meshes:

Assumption 3; 3 The number of elements K of .7, is O(h™?) and the elements satisfy:

K e 79(h)\ £, W0 < dy, dy, ds S B 2"

K e 70(h)\ L WO < dy, dy Shrg Y WP <ds <

K € 7E(h)\ L4 W0 < dy, dy S bl 2 W0 < dy S hrg
K € Lo dy ~ dy ~ d3 ~ h¥/P

Ke72(h)nLy dy ~ dy ~ h*/8 hFIB < ds < h
KeVe(h)NLy\ Ly dy~dy hE/B WP < dy S hrg
K € 79(h) RF/B < dy, dy, d3 < h.

The lower bound h*/# for all dimensions of al elements in the mesh allows to keep the size
estimates (47)-(48) (Lemma 5.4). We can check that all arguments in the proof of Theorem 5.3
are still valid and thus we obtain

Theorem 6.1 Let the degree of the elements & > 1 be fixed. Let {ﬂh}heh be a family of hexa-
hedral meshes verifying Assumptions 1 and 3;, 3, and let theright hand side f be regular enough.
Then, if the Céa-type estimate (70) holds, the Galerkin method (68) is algebraically optimal of
degree k.

As a corollary of this theorem, we obtain that graded tensor product meshes provide alge-
braically optimal Galerkin methods.

Corollary 6.2 Wth afixed & > 1 let {ﬂh}heh be a family of hexahedral meshes constructed by
a macro decomposition of 2 in hexahedra, each of them being meshed by a tensor mesh, product
of 1D graded mesh of the form (45) with 7 = k/3. Then, if the Céa-type estimate (70) holds, the
Galerkin method (68) is algebraically optimal of degree k.
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6.2 Over-refinement

It may happen that a decomposition of the domain in hexahedral macro-elements €2; helps for
the mesh design: Without significant loss of degrees of freedom, a refined mesh on Q2 can be
constructed by the combination of refined meshes on the €2; where the edges and corners are now
those of the 2;: For example, a refined mesh on the Fichera corner Q := (—1,1)% \ (-1,0]®
can be obtained by refined meshes on the seven cubes of which Q consists. The outcome is an
over-refined mesh on 2 where the sets & and ¢ of edges and corners are now augmented by
those of the €2;: let us denote by &* and 4™ those augmented sets. With these new sets we
associate regions 7.0, ¥, 7.¢ and distance functions r. and 7. like before.

Such an over-refined mesh satisfies Assumption 3; 5, and if it is hexahedral, Theorem 6.1
yields the algebraic optimality. If the mesh is tetrahedral, we have to revisit decomposition (43).

Of course, there are no singularities inside the internal edges or at the internal corners. We
still have a corner type singular behavior near the external corners along the internal edges. It
is possible to prove that the decomposition (43) can be replaced by the following more precise
version

u=uy+ Vg where ¢=qo+q +greg and:
ug € M*_”fl’%(Q) (72)
go € METHP(Q), g e WIP(Q),  greg € WTP(Q).
Here we have made use of new spaces M> """ (Q) and M>"™?(Q): They are defined as M7""(Q2)
and M7"P(Q2), smply replacing the sets & and %" by their augmented versions &* and 2. As

for W4"P(Q), it bears weights only at the corners ¢ € 4 (we denote by 7 the global corner
neighborhood 7¢ := 72 U Uees, 7&):

W (@) = {ue /(@) : V]a| <m 0*uelr(r"),
(73)
Vee® rit™oay e Lp(%)}.

The decomposition (72) allows for proving the algebraic optimality of degree & for any tetra-
hedral over-refined mesh in the above sense: There we use the fact that the projection operator 11
isdiagonal on gradients and the estimate in Proposition 3.2 (ii).

6.3 Piecewise-homogeneous materials

We assume now that €2 admits adecomposition into afinite number of polyhedral subdomains €2,
j=1,...,J,sothat the magnetic permeability 1 andthe electric permittivity « are constant (and
equal to some positive numbers p; and €;) on ;. The electric problem has now to interpreted
as atransmission problem between the subdomains €2; with the interface conditions [u x n| = 0
and [eu - n] = 0. Thevariationa form of the electric problemis, instead of (3):

Find u € Hp(curl, Q) such that:

/,u_l curlu-curlv — deu-v = /f -V Vv € Hy(curl, Q). (74)
Q Q

The singularities of u are now aso present along internal edges and corners (i.e. the edges
and corners of the 2; which are not contained in 0€2). They are described in [24]. There are two
main differences from the fully homogeneous case:

25



1. The singularities may be stronger: in general u is not piece-wise H'/?;

2. The expansion along the internal edges e contain regular terms of the form (7e, e, ze) —
de(ze) inloca cylindrical coordinates, with d. smooth inside e. Such termsdo not fit well
with the weighted spaces M.

We define the sets &* and ™ asin Section 6.2. Then, if f isregular enough, we have the
following decomposition for al m > 0, similar to (72)

u=uy+ Vg where ¢=qo+qi+ge and:
wy €M™ (0)
go € MPTP(Q)  with Vo € MYP(Q),
Q€ Wi’rfjgl’p(g)a Greg € WTHP(Q).

(75)

where 5 = 5(Q) > 0 and p = p(Q) > 2. Here M"™"(Q) and M3"™P(Q) are defined as
M5 "™P(€2) and M>™P(Q) above with the distinction that the derivatives are now considered in
each Q; separately, which meansthat the regularity in M5""(€2) and M5 (1) isapiecewise
regularity inside each ;.

The space W5™(Q2) bears weights at all corners ¢ € ¢* and is defined similarly as
W5P(Q) in (73):

WP (Q) = {u cLP(Q) : Vel <m 8% e LP(70), -

Veeer ritl®loay e LP(%)}.

Notethat if 5 < %—1,thepart greg iISNO More of any usesincethen W 1r(Q) c W*j;”_zl’p(ﬁ).
The Galerkin problem associated with (74) reads: Find u, € X, such that:

/(,u1 curluy, - curlvy, — deuy, - vp,) = /f -V, Vvn € Xy, (77
Q Q

The results in the previous sections can be extended as
Theorem 6.3 Let thedegree k > 1 befixed. We assume (i) or (ii):

(i) The family of meshes {ﬂh satisfies Assumptions 1 and 2;, 3 inside each €2; .

Frey

(i) The family of meshes {ﬂh}hGh satisfies Assumptions 1 and 3;, 3 inside each 2; and are
formed with hexahedral elements.

Then, if the Céa-type estimate (70) holds, the Galerkin method (77) is algebraically optimal of
degree k.

7 Discrete compactness and the eigenvalue problem
In Section 5, relying on the coercivity of problem (3) when A € C\ R, , we have proved algebraic

optimality for our Galerkin approximation. The extension to positive A isnot straightforward. A
necessary condition for that is the “spectral correctness’ of the Galerkin approximation, which
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means that all discrete eigenvalues converge towards eigenvalues of problem (3) and, conversely,
al eigenvalues of problem (3) are approximated, all respecting multiplicities.

Dueto theinfinite dimensional kernel K of problem (3), the spectral correctnessisnot an easy
consequence of the coercivity of the form (u,v) — (curlu, curlv) + (u,v) on Hy(curl, ),
because the embedding of Hy(curl, Q) into L?(£2) is not compact. Related to the fact that the
condition divv = 0 eliminates /C, the subspace V' of divergence-freefields:

V ={v € Hy(curl,Q) : divv =0},

is compactly embedded in L?(£2). The condition divv = 0 cannot be forced into the discrete
spaces, but only imitated in the form of the discrete divergence free condition: The discrete coun-
terpart of V' is V},, the subspace of discrete divergence-free fields defined as

Vi = {Vh € Xy fQVh~Vph =0, Vpp € Ph},

where P, isthe space of piecewise polynomial continuousfunctionsgenerated by P;. (see Section
2.1).

The discrete compactness property [35] is a necessary and sufficient condition for the spec-
tral correctness of the Galerkin projection [10] and [16]. This property is a consequence of the
following condition: There exists a sequence ¢y, 9, — 0 when h — 0 such that

Vvp,eV, IveV . ||V*VhHX§6h||Vh||X (78)

see[10, 11], [17] and also [13].

7.1 Thesourceproblem

It iswell known that the problem (68) is well-posed and quasi-optimal if and only if the discrete
inf-sup condition:
JaeR : inf supw_
viex, wpeX, [unllx[vallx
holds uniformly in A € b . Using [15, Theorem 4.1] (see also [13]), we know that (79) holds for
h sufficiently small if condition (78) holds.
For the proof of (78), wefix v; € V}, and choosefor v the solution of the problem:

a>0 (79)

v € Hy(curl,Q) : curlv=-curlvy, divv=0. (80)
We first prove aregularity result for v inthe form asplitting in a“regular” fi eld and a gradient:
Lemma7.1 For all p > 2, v can be split into
v=w+Vqg with weW;?(Q) and ¢eH)Q): AgelP(Q). (81)

with estimates
[Wllwir) + [[AdllLe) S Ivallx + [ eurl vy e ) (82)

Proof: ~ We notethat curlv = curlvy, belongsto LP(Q2) for all p > 2. The proof consistsin
proving (81) for any v € Hy(curl, Q) suchthat curlv € L?(2) and divv = 0.
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Let O bean openball containing Q. Let v bethe extension by zero of v to ©O. Then curlv
istheextension by zero of curl v to O. Thestraightforward generalization to the spaces 1P of [3,
Lemma 3.5] givesthe existence of wo € W1?(Q) such that divwy = 0 and curl wy = curl v.

Since curlwy = 0 in O\ Q thereexists 1y € W2?(O \ ) such that wy = Vi in O\ Q.
There exists an extension ¢ € W2P(0) of 1 to Q: @D‘O\Q =1.

Weset w := wy — V¢ in O. Thus

w € WHP(0) and W{O\Q =0.

Therefore w belongsto W (Q2).
Let v; bethedifference v — w. Since curlv; = curlv — curlwg = 0 in 2, there exists
q € HY(Q) suchthat v = Vgq. Since

divvy = divv — divw = A¢ € LP(Q)
we obtain that Ag belongsto LP(€2), which ends the proof, since the estimates can be proved at
each stage. O

Corollary 7.2 The Nédélec interpolation operator II* iswell defined for the solution v of prob-
lem (80).

Proof:  Inthe splitting (81) of v, the potential ¢ belongs to H5+3/2(Q) forad > 0, henceis
continuous on ). Therefore the Lagrange interpolation operator 7% iswell defined on ¢ and we
have

T*w + V(r*q) = ITF(w + V), (83)

which gives senseto ITFv . O
Lemma 7.3 For the solution v of problem (80) the following estimate holds
IV =vilx S v =] 2q)- (84)

Proof: The proof isknown as NEDELEC’strick, see [34]. For completeness we recall itssimple

arguments. Since curl(v — v;) = 0, thenorms |[v — v x and [|[v — vyl 2 coincide. In

order to estimate the L? norm we evaluate the scalar product:
v — Vh”fz(g) = (V—vp,v—vy)

(85)
= (v —vp, v —IFv + TIFv — vy,).

If we prove that
(v —vp, v — vp) =0 (86)

estimate (84) is clearly a consequence of (85). So, let us prove (86).

Since v;, belongsto Xj,, ITFv;, = vy, , therefore TTFv — vy, = T¥(v — vy,) .

Since curl(v —v;) = 0, thereexists ¢ € H'(2) suchthat v —v;, = Vq. Since IT* (v — v3,)
makes sense, 7*¢ also makes sense and we have

v — vy, = I*(v — v) = V(xg).

Now, (v,TTFv — v;,) = (v, Vr¥q) iszerosince divv = 0, and (v, ITFv — v;,) = (vp,, VFq)
iszerosince v, € Vj, and 7*¢ € P, . We have obtained (86), which ends the proof. O
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Now we are able to prove that condition (78) holds for low order edge elements on anisotropic
tetrahedral meshes and for edge elements of any order on hexahedral anisotropic refined meshes,
provided an approximation result holds for the solutions of the scalar Dirichlet problem:

g €Hy(), and Ag=g. (87)

Assumption 4 (i) or (ii) holds:

(i) The meshes .7, aretetrahedral, &k = 1.

(ii) The meshes .7, are hexahedral, k > 1, and thereexists ¢* > 0 and p* > 2 such that for all
p € (2,p*) andfor all g € LP(Q2) the following estimate holds between the solutions ¢ of (87)
and itsinterpolate 7*¢:

lg — 7 qllm @) S 77 lglluee)- (88)

We present (88) as an assumption here, because no proof seems to exist in published form.
From [5] we conclude, however, that a proof, using techniques similar to [6], is possible.

Theorem 7.4 Let the family of meshes {ﬂh}heh satisfy Assumptions 1 and 2, 5. We assume
moreover that Assumption 4 holds. Then there exists ¢ > 0 such that the solution v of problem
(80) satisfy the following approximation estimate

v = ]l 20y < h7llvallx- (89)
Therefore (78) holds.
Proof: Using (81) and (83), we obtain
v — HkVHL?(Q) <|w- HkW”LZ(Q) +llg— 7quHHl(Q)- (90)

To bound the first piece ||w — HkWHLQ(Q) , We use Proposition 3.2 which gives us

~

Iw — w2y < hllWllwis for hexahedral meshes

For tetrahedral meshes and when k = 1, we are exactly in the situation of Proposition 3.4
since curl w isaconstant vector. We then have:

[w — w2y S hllwllwir(q) for tetrahedral meshesand & = 1.

Concerning the second piece |q — 7r"fq||H1(Q) , we use (88) in any situation: For tetrahedral
meshesand k£ = 1, itisproved in [7] and we assumein (ii) that it holds for hexahedral meshes.
Therefore we have obtained that there exists ¢’ > 0 and p* > 2 suchthat for al p € (2, p*)

v =152 S A7 (IWllwrre) + 184l zo(e)-
Combining with (82), that implies

IV =Tl 20y S b7 ([Vallx + [ curl vyl ).
We end the proof by virtue of the inverse inequality
(

3(L_L\k
leurl vy |[ray < h*%~2)75]| curl vy 2

Choosing p close enough to 2 so that o’ + 3( % — 1)% remains positive, we have obtained (89).

B
O
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Finally, combining Céa's estimate which is a consequence of the inf-sup condition (79) with
the interpolation estimates of Theorem 5.3 we have obtained:

Theorem 7.5 Let A\ > 0 be not an eigenvalue of (3) and the family of meshes {ﬂh}heb verify
the assumptions in Theorem 7.4. There exists a hy such that, for all h < hgy the variational
problem (68) admits a unique solution. If u isthe solution of (3), there holds:

_ < inf _ ,
u uhllxwv;thHu Villx

Moreover, for sufficiently regular right hand side f: |ju — uy||x < R

As far as discontinuous coefficients are concerned, as it is shown in [13], the condition (78)
implies wellposedness also for the transmission problem (74). We have:

Corollary 7.6 Let A > 0 benot an eigenvalue of (74) and the family of meshes {ﬂh}heb verify
the assumptions in Theorem 7.4. There exists a hy such that, for all h < hgy the variational
problem (77) admits a unique solution. If u isthe solution of (74), there holds:

u—u < inf fju-— :
| nllx S o of lu —va|[x
Moreover, for sufficiently regular right hand side f: ||u — uy||x < A*.

7.2 Theeigenvalue problem
The eigenvalue problem associated to (3) reads: Find A > 0, u € Hy(curl, ) such that:

/curlu ~curlv = A/u Y Vv € Hyp(curl, 2). (92)
Q Q

The eigenvalues \ are apositive increasing sequence {;}; and have afinite multiplicity (Theo-
rem 1.1). Let usdenote by E), the associated eigenspace and by m its dimension.
The corresponding Galerkin eigenvalue prablem isthen; Find A\, > 0, u;, € X}, such that:

/curl uy, - curlvy, = )\h/uh -V, Vv € Xp. (92)
Q Q

As a consequence of the discrete compactness property, and therefore of (78), problems (92) are
a spurious-free spectrally correct approximation of (91) in the sense of [16]. As a conseguence of
[28, Theorem 1 and 3], thisimplies the following estimates for any eigenvalue A of (91):

(i) Thereexistsexactly m eigenvalues Ay, ;, @ = 1,...,m (counted with their multiplicity) of (92)
such that limy,_.o Ap; = A, and moreover the following estimate holds:

‘max A — | S ( sup  inf ||u—VhHX> -
1=1,....m uek, vpeXy
llullx=1

(ii) Let E}, » bethe union of the discrete eigenspaces associated to { Ay, ; }1<i<m , then
sup inf [[lu—wyl|lx + sup inf [[lu—uyx < sup inf |u-—wvy|x.
uhEEh»\ UGE)\ UGE)\ uhEEh7)\ UEE/\ VhEXh

lunllx=1 [ullx=1 lullx=1

Since the best approximation result (46) also holds for eigenvectors, we obtain the following:
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Theorem 7.7 Let the assumptions of Theorem 7.4 hold. Wth the notation above, the following
holdsfor h small enough:

max |\ — A < A%

i=1,....m

sup inf [[u—w|x + sup inf |lu—ulx < RF
uhGE‘h)\ uck) ucky uhEEh,/\
lunllx=1 flullx=1

As far as the transmission problem is concerned, the same kind of result hold thanks to the
validity of the discrete compactness property [16] and the regularity and approximation results
stated in Section 6.3.

8 Conclusiveremarks

We have proved agebraic optimality of order % for aclass of refined meshes using edge elements
of degree k inthe following two cases

1. Forany A € C\ Ry andany k£ > 1, using hexahedral elements or tetrahedral elements;

2. Forany A > 0 whichisnot an eigenvalue and any & using hexahedral elements; if tetrahe-
dral elements are used our proof islimitedto k = 1.

Let us comment on our assumptions for the mesh, in connection with the assumptions used
in the papers [7] (Laplace equation on polyhedra) and [40] (Maxwell equations on tensor product
domains 2 = G x Z,withapolygon G and aninterval 7).

Taking the specia form of thedomain G x Z into account, the assumptions on the refinement
parameters are al similar.

In [40], pentahedral and tetrahedral meshes are used. The pentahedral elements are tensor
product of uniformly refined triangles inside G by subintervalsin Z. Thus they exactly satisfy
our Assumption 1. Note that our results would extend naturally to a pentahedral mesh, or to
a mixed pentahedral-hexahedral mesh, provided Assumption 1 holds. The tetrahedral elements
used in[40] are obtained by dividing each pentahedron in threetetrahedra K, K> and K3. Both
K, and K5 haveonefaceinsideaplane G; transverseto the edge. Thusthey satisfy Assumption
1. Incontrast, K3 hastwo of itsverticesin such aplane G; and the two othersin another parallel
plane G. It does not satisfy Assumption 1. We would not be surprised if the result of [40]
obtained for £k = 1 cannot be extended to k£ > 2, due to the fact that Propositions 3.4 and 3.7
have no clear generalizationto k& > 2.

Assumptions (3.2-3.3) of [7] are weaker than Assumption 1 because, in particular, they do not
impose any limitation on the aspect ratio of the elements. From our proofs, we see that such a
limitation is connected to the vector nature of interpolant, and appears to be necessary as soon as
there is no commutation property with the projection on the axes of coordinates.
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