Crack singularities for general elliptic systems
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Abstract.  We consider general homogeneous Agmon-Douglis-Nirenélépdic systems with
constant coefficients complemented by the same set of bguwaalitions on both sides of a crack
in a two-dimensional domain. We prove that the singular fions expressed in polar coordinates
(r,0) near the crack tip all have the form%”gp(e) with £ > 0 integer, with the possible
exception of a finite number of singularities of the forhlogr ©(f). We also prove results
about singularities in the case when the boundary conditiamthe two sides of the crack are not
the same, and in particular in mixed Dirichlet-Neumann baany value problems for strongly
coercive systems: in the latter case, we prove that the etperof singularity have the form
% +in+ % with real n and integerk . This is valid for general anisotropic elasticity too.

Introduction

It is well known that the solutions of the Neumann problemtfa Laplace operator
or the Lamé system have strong singularities near a cracklti general they do not
belongto /2 due to the presence of a singular function of the forfp(6) , with (r, )
the polar coordinates centered at the crack tip.

We prove in this paper that such a situation is still validemeery general hypotheses.
Let us recall that the general theory of elliptic boundarjugaproblems near conical
singularities,cf KONDRAT EV [10] and RISVARD [8], yields that singular parts in the
solutions are present at the crack tip and always have the for
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where the A are complex numbers, called temgularity exponentsWe prove that for
general elliptic systems in the sense aMON, DOUGLIS & NIRENBERG [1] with the
sameboundary conditions on both sides of the crack, the singulexponents all have



the form £ + & with integer k , with the possible exception of a finite number of integer
numbers. In particular for systems of elasticity with gethenaterial law, we find again
the result proved by §zLov & M AZ’ YA [12] and by DUDUCHAVA & W ENDLAND [7].

Extending our investigation to the more general situatitieng we may have two
different sets of boundary conditions on the two sides onctiaek, we prove that in a
fairly general situation the exponents are distributedhaiperiod equal ta} . this fact is
not in contradiction with the situation when the boundamditons are the same on both
sides of the crack: in the latter situation the integers algoear as primary exponents
of singularities, but at the end these integers do not plgyrale because the associated
“singular functions” are nothing but polynomials.

When the operator is a self-adjoint strongly coercive sysa@d the boundary con-
ditions are mixed Dirichlet — Neumann, coupling our anaysith an argument inspired
by the paper [11] by KzLov & M AZ’ YA, we obtain that the singularity exponents have
the form i + in + k with real n and integerk . This is also valid for systems of elas-
ticity with general material law, where our result givesk#ee result of uDUCHAVA &
NATROSHVILI [6].

While the method of [7] and [6] is based on a pseudo-diffeaéméduction to the
boundary and a partial Wiener-Hopf factorization, our roetlof investigation is rather
simple and explicit, based on a way of computoigracteristic matricesi.e. finite di-
mensional matrices#’(\) which are singular for the\ which are the singularity expo-
nents. This construction of characteristic matrices wasduced in our work [3].

Here we concentrate on theain singularitiesi.e. those coming directly from the
poles of the inverse of the Mellin symbol, see (1.5), assediavith the principal part of
the boundary value problem with coefficients frozen at tlaelctip. These main singular-
ities generate directly the solution asymptotics near taekctip when the boundary value
problem is homogeneous with constant coefficients. Whehdhiedary value problem is
inhomogeneous, the solution asymptotics is a linear coatioin of these main singulari-
ties and of “shadow” singularities whose exponents are lgithg main exponents shifted
by positive integers.

Moreover, when the domain is three-dimensional and is extra screen region, the
singularities are still generated by the main singulasiéita crack tip for associated two-
dimensional problems and our present study allows a dewgripf the three-dimension
edge singularitie;f a forthcoming work.

Our paper is organized as follows: §i we set the boundary value problems and
define the singularity spaces and singularity exponent§2iwe give Cauchy residue
formulas for these singularity spaces which allowydthe introduction and the study of
the characteristic matrix#”(\) . In §4 and 5 we deduce from the previous formulas the
above mentioned results in the general case and in the casetivnboundary conditions
are the same on each side of the crack.§6nand 7, we investigate mixed Dirichlet-
Neumann boundary conditions for general strongly coemm@leadjoint systems, and for



elasticity operators. We conclude our papeg8rby regularity results for solutions of the
above mentioned problems.

1 Elliptic systems in a domain with crack

1l.a A multi-degree elliptic boundary value problem

Let ¥ := R*\ T' be the infinite bi-dimensional model region with crack. Hérds
a half line. We can assume that in a suitable system of coateliz,, x-)

F:{($1,$2)ER2| 1 >0, ZL‘QZO}

Let (r,0) be the standard polar coordinates such that r cos @ and x5 = rsinf.

Let L(0y,0,) beaNxN properly elliptic systenn the sense of AMON-DOUGLIS-
NIRENBERG[1], homogeneous with constant coefficients. This meartghieae exist two
sequences of positive integefs,...,oy) and (r,...,7y) such that the order of the
operator coefficient.;;, of L is o; — 7, . The assumption that is homogeneous means
that L,, has no lower order term. I; — 7, is < 0, itis understood that.;;, = 0.

Let m be the half-sum of degre€s; — 1)+ - -+ (o — 7w ) . The proper ellipticity
means thatn is integer and that for every pair of independent real vacibre (&5, &»)
and =’ = (&1, &) the polynomial int, det L(=Z + t=') hasm roots with positive imag-
inary part andm roots with negative imaginary part.

Let B = (By,...,B,) and C = (C4,...,C,,) two systems otomplementing
boundary conditiongor L on I' in the sense of [1]. Every operatds, has the op-

erator coefficientsB,,, £k = 1,..., N and there exists a sequence of positive integers
(pP,...,pB) such that the degree aB;; is p, — 7. Similarly the coefficientsC),,
of the operatorC), has degree{’ — 7, with positive integers(p{, ..., p¢) . Like the

operatorsL; , all these boundary operators are supposed to have no |oderterm.

Let us denote byy, and ~_ the trace operators ofi from the upper and lower half
plane respectively. In the present paper we are interesteéttiproperties near the crack
tip 0 of any vector functionu = (uy, ..., uy) solution of the following boundary value
problem

Lu = f In%,
v.(Bu) = g, onl, (1.1)
7-(Cu) = g- onT,

with the dataf = (fi,..../n), g = (GitseresGom) @A g = (9tyeeesGom)
smooth enough.

This problem appears as a particular case in the generaltbéelliptic boundary
value problems in domains with conical singularities asstigated by KNDRAT' EV
in [10]. The main result coming from the general theory is spétting of any solution



u into a regular partu,., and a linear combination of a finite numbersiafigular func-
tions ! . Which only depend on the geometry of the domain and the caeffe of the

7]
operators.

From explicit formulas relating to classical operatorstsas the Laplacian and the
Lamé systemgf GRISVARD [8, 9], itis well known that in the presence of a crack (a plane
angle with opening2x ) the Dirichlet and Neumann problems for the above mentioned
operators have all their singular functions of the formt () with (r,6) the polar

coordinates such that; = rcos@ and x5 = rsinf.

Several works are devoted to different boundary value prablfor the elasticity sys-
tem with general material law: let us quot®@KLov & M AZ’ YA [12] and DUDUCHAVA
& WENDLAND [7] who prove that the Dirichlet or Neumann boundary cormai onboth
sidesof the crack still yield singularity exponents equal §o+ k and DUDUCHAVA &
NATROSHVILI [6] who prove that the mixed Dirichlet — Neumann problem liasm+§
as singularity exponents (with € R and k£ € N).

Our aim is the investigation of these singular functiodrf,%,g at the crack tip for the
most general elliptic system in the sense of [1]. Our metlsaso a simpler alternative
to the Wiener-Hopf method used in [7, 6].

1.b Singularity spaces

Let us now recall the description of singularities introedan [5, 3]. Singularities are
in close relation witlpseudo-homogeneous solutiafishe above problem (1.1) with zero
dataf =0, g. = ¢g_ = 0. Letus introduce the relevant spaces of pseudo-homogsneou
vector functions in relation with the multi-degree of preinl (1.1). Let\ be a complex
number. The spac&*(¢’) associated with\ is defined as follows in polar coordinates

(r, 0)
Q
SNE) = {u=(u,...,un) € Z'(E)N | up=r" ZlogqrcpZ(Q)}. (1.2)

q=0

In the above definitior) is an arbitrary integer and the angular functiapis belong to
©>(]0,27]) . Let S3(%) be the subspace of homogeneous function§(¢) :

So(€) = {u=(ur,....,un) € Z'(€)N | wp =1 0x(0)}. (1.3)
The first singularity space associated with problem (1.1) is
2ME) ={ue SN%)| u solutionof (L.1)withf =0, g, =g =0}. (1.4

Of course, only the cases when this space is not reducéd tocorrespond to the pres-
ence of singularities. The correspondingare those for which thilellin symbol M/ ()
is not invertible. They are callégingular exponents’”
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We recall that the Mellin symbolV/ of problem (1.1) is determined by the effect
of the operator of problem (1.1) on elements§f(%¢) and is defined for any complex
number ) as

M) = €2([0,27)Y 3 o — (¥, x4, x_) € €=([0,2x])Y x C™ x C™

with _
e L) = Ay, in%, j=1,...,N,

Y (X Bua( ) = Ay, onl, h=1,...m, (L5

~y_ ( Dok Ch,k(r)"”“gok)) = T)‘*pgx_,h onl', h=1,...,m.
According to the general theory [2, 10], the inverdé(\)~! of the symbol M is a
meromorphic operator valued function.

Then the spaceZ2’*(¥) in (1.4) is not reduced tq0} if and only if \ is a pole of
the inverse of the Mellin symbal () : for any pole )\, of AM~! there holds

1
X N(E) = { — diag(r™ ™ rPAM(A) "I (N) dA |
{2” - /’Y(Ao) (1.6)

¥ e AN © ¢([0, 27])N x C™ x @m},

with a closed contoury()\y) surrounding), (and no other pole of\/~!) and the space
of analytic functions[\] .

Moreover the non-zero elements of the spac&s(%’) are the singular functions in
the basic weighted Sobolev spaces aNORAT’ EV’s theory [10].

If ordinary Sobolev spaces are used to describe the regutdidata and solutions, we
have to take polynomials into account and define other samgylspaces for any integer
A € N, see [5]. We will come back to this in section 5 devoted to theason where the
boundary conditions imposed on both sides of the crack asame B = C').

2 Residue formulas for singularities

We are going to study the spaces™ (%) . For this we first recall a few notations and
results of [3].

2.a Residue representation for the singularity spaces

The first result is that there holds a residue representafiof” (\,) like (1.6) in-
volving only finite dimensional objects. Let us introducsffir

W(A) = {ue SH(¥)| Lu=0}. (2.1)

There holds [3, Th.2.1]



Theorem 2.1 For all complex number\ , the dimension of the solution spa@B(\) is

equal to 2m and there exism analytic (with respect to\ ) vector functionswf(k) ,
¢ =1,...,m,which form a basis oR3(\) for any non-integer\. The two subspaces

20t (\) and 20~ (\) of dimensionm generated byw,f()\) have a special structuref
Lemma 2.4

We introduce the following two matrices

Definiton 2.2 a. W(\) isthe N x 2m matrix formed with the twoN x m blocks
W*(\) with coefficientsW,fg(A) = wfk(k) , Where wZ(A), wa()\) are the
N components of the basis vector functions in Theorem 2.1:

W) = (W*()\) W*(A)). (2.2)

b. 47()\) is called thecharacteristic matrixand is defined as th2 x 2 block matrix
with the m x m blocks

G (A)

where #*()\) and ¢*(\) have coefﬁcientdﬁz and c,i, respectively, determined
by the identities

N = (%W 7 (”) , (2.3)

o (Bhwgi) = 'r’)"p}?b}iw and ~_ (Chwgi) = r’\’pgc; onl, (2.4)
for h and ¢ in {1,...,m}. n

We have, [3, Th.4.5]

Theorem 2.3 Let )y in C. There holds:

(i) If Xy is apole of M(\)~! then )\ is a pole of 4 (\)~! ; let d be the order of
this pole of 4 (\)~!. Then

2% = {% /wo) WO AN A | e B o),

with the space of polynomialB,_;[)\] of degree< d
(ii) If anon-integer \, is a pole of 4 (\)~! then )\, is a pole of M(\)~!.



2.b Formulas for a basis of 20(\)

To make this statement efficient, it remains to exhibit adasRU()\) . In order to do
that, we use notations and concepts fromgB8a]. For the elementary example whén
is the scalar Laplace operator, such a basis is given sinyply*band ¢* forany A # 0,
where ¢ is the complex writing of the cartesian variables

( = o1 + 129 = ret? .
Such a result extends to our properly elliptic ADN systémas follows. We introduce
the following diagonalN x N matrices for complex numbersc C, (€ ¢, (* € ¢
anda e C, |a] <1:

Zt (NG CCha) = (/\()\ —1) A =7+ 1) (aC+ )T 5M>1<k (<N

(2.5)
Z=(N ¢ ha) = (/\()\ — 1) A= 41) (C+ag)M ™ 5k€>

1<k <N
and the Cayley symbols aof,
L*(a):=L(a+1,i(a—1)) and L (a):=L(1+a,i(l—a)). (2.6)

Noting that

where d. , 07 satisfy

8<C7azzzlv a<Z7aE<:07

we obtain B } B

L(0y,05) Z*(Ni ¢, G a) = Z5 (X ¢, G o) L (o) (2.7)
where Z* have a similar expression &" with 7, replaced witho; . According to [3,
Th.2.1], the elements o5 ()\) can be obtained as Cauchy integrals in the variable

Lemma 2.4 For any non-integer € C \ N there holds

() = {5 /IMZ%A; (.Ga) (L) (0) F(0) da | Fla) € Ao]@CY ). (28)

Due to the proper ellipticity ofZ, , both matricesL* have no roots on the unit circle
(and exactlym roots inside the unit circle). In order to give a sense to thevva integral,
we have to make precise what means a contour integral of flee ty

/ (¢ +7) h(a) da

laf=1

7



for a function . meromorphic inC without poles on|a| = 1. There exists therefore
p < 1 such thath has no poleinfa € C | p < a < 1}. We define(a¢ + ¢)* as the
product (* (1 + a%)k. This is well defined and analytic in. and \ for || < p and

for ¢ in the sector% : We can choose the branch of that coincides with|¢|* on the
positive real axis. Then we define

_ B C\A
o Ah(a) do = M1+ ax) h(a)da, 2.9
/|a:1( ¢+0) h(e) /alpg( + g) (a) (2.9)
and similarly
_ - Z N
/|a1(< +aQ) h(a) da = /a|:p CA(l + a?) h(a) do. (2.10)

3 The characteristic matrices for crack tips

We give now a particular form for the matriced”(\) in connection with the situa-
tion of a crack.

The following assumption yields simpler formulas for a lsasfi 20*(\) and, as will
be seen later, is not restrictive.

Hypothesis 3.1 The roots of the equationdet L* (o) = 0 are distinct. Letali, O
be these roots contained in the unit digi < 1.

Then we have simple expressions for baseQf(\) :

Lemma 3.2 Under Hypothesi8.1, forany ¢/ = 1,...,m let qf € CV be a non-zero
element of the kernel otf(oj) . Then the following sets are basesf ()

wj(/\) ::Zi(/\;g‘,f;af)qf, for (=1,...,m. (3.1)

According to (2.9) and (2.10), in the formulas givirif- we simply use the expres-
sions

_ _ A _ CAA
<az<+¢>*:=@(1+az%) and ((+0;0" = A1) (@)

We still make Hypothesis 3.1. LeB* and C* be the Cayley symbols aB and C,
cf (2.6). Then there holds

(3.3)



where Zé and Zé have similar expressions @& with 7, replaced withp? and p¢
respectively.

Thus using (3.2)-(3.3) we obtain that

+ B FA-pp s Aoy () ot
Brwy = A =1)--(A=p, +1)¢ h(1+0‘4?> By (ap) g

and similarly

Byw; = XA —=1)---(A—pf +1) s (1 - aZ%)A_ph B, (a;) g, -

As the trace operatof, satisfiesy, (() = ~v,(¢{) = r, we obtain for the coefficienté,fg
defined in (2.4)

by = AN —=1) - (A= pP + 1) (1 +af )" B (of) ¢f

and
bre = AA—=1)- - (A= pP + 1) (1+ ) W B (o)) ¢; -

Introducing the diagonatn x m matrices
EP(\) =diag(AA—=1)---(A—p}} + 1))

and .
FH(X) = diag((1 + o))
we have

{%(A) = EP(N) x B* x F*()) (3.4)

B-(N) = EP(N)xB x F~(N),
with B+ the matrices with coefficientéiz
b, = (L+0f) " Bi(aj) g and by, = (1+a7) "B (ap)g;.  (35)

In a similar way, noting that for any integer the tracey_(¢* ") is equal tor*e*™
and the tracey_(¢*™") is equal tor*e=2"*  while v_((1 + a%)’\) is equal to(1 + a)*
we obtain

G\ = e 2MEC()) x € x Fr(\) -
E-(\) = eX™EC(\) x € x F~()\), '
with ¢* the matrices with coefficients;,
G = (1+07) P Claf) 7 and g, = (1+0;)FCylap)g;. (37)



Here the diagonal matrix2“(\) is defined like EZ()) .
Formulas (2.3) and (3.4), (3.6) can be condensed in block & follows

Looking back at the definition of the diagonal matrice$()\), E°()\) and F*()\), we
have obtained

Lemma 3.3 The matrix.4"(\) appearing in Theorer.3has a factorization in a prod-
uct of three matrices

HO = BN ainge v ) FOY 39)

where the matrices”(\) and F()\) are diagonal. The matrix*'(\)~! is holomorphic
in A on C and E(\)~! has simple poles only, and the set of its poles is
B (O
{0717"'7121;1;;1{ph 17ph 1}} (310)

The matricesB* and ¢* have coeﬁicient@,i, and c,i, given by(3.5)and(3.7)respec-
tively.

4 Poles of the inverse Mellin symbol

The aim of this section is to combine Theorem 2.3 with Lemr3ar8order to collect
properties of the set of poles of the Mellin symbl(\)~! in the situation of a crack tip.
We start with the following lemmas

Lemma 4.1 The matricesB* and ¢* appearing in Lemm&.9are invertible.

PROOF. It suffices to prove this fof3* . As the boundary systen covers the interior
system L, taking C' = B we obtain an elliptic boundary value problem on the domain
% , and then, according to the general theory of corner domé#iesassociated Mellin
symbol has a meromorphic inverse. Therefore, in view of Té@a2.3 the corresponding
characteristic matrix#"(A) has a meromorphic inverse. Taking = C' in (3.9) we

deduce that
B+ B
€f2i7r)\%+ €2i7r)\%7

has a meromorphic inverse. Therefore the same holds for dtiexm

a0 B B- \ (B B
_efQiTrAId 1d €f2i7r)\%+ €2i7r)\%— - 0 (e2i7r)\ _ 6721'71')\)%7

and the matrice®s™ and B~ are invertible. [
A straightforward calculation yields:
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Lemma 4.2 Let us setB = (B~) "B+ and ¢ = (¢~)~'¢+. Then there holds
B Id 0 Bt B [((Id—e¥™B71g) 0
r=e0 (i) (3 ) (M50 n)ro
(4.1)

We deduce from this lemma a periodic structure for the®gt/) of the poles of the
inverse Mellin symbolM , which is called thespectrum of the Mellin symhol

Theorem 4.3 The Mellin symbol)M associated with probleifi.1)satisfies the following

properties: There exists an integer € {1,...,m} and n distinct complex numbers
A1, .. A, With Re ) € [0, %) , such that the following inclusions hold for its spectrum
S(M)

{N+EI1<j<n keZ}\J C (M)

4.2
S(M) c {N+Ei[1<j<n keZ}ulJ #.2)

where J is the set of integer&3.10)

PrRoOOF 1. If Hypothesis 3.1 is satisfied, we deduce from Lemma 4a2 tie set of
the poles of 4 (\)~! isNthe union of the set/ in (3.10) (which is the set of poles of
E(\)7') and of the set/ of all A € C such that(Id — e~*™*B~1¢) is not invertible.

Therefore J is the set of all\ € C such thate*™ is an eigenvalue of8~'¢. Let
s1,...,5, be the (distinct) eigenvalues d8~'¢. Then using Theorem 2.3, we easily
obtain inclusions (4.2) by setting

A €C with Re);€0,3), et = g 4.3)

2. In the case when Hypothesis 3.1 is not satisfied, it isgddisible to define a smooth
perturbation[0,1] > ¢ — L. of L, such thatL. is still elliptic, B and C' cover it,
and such that the rootszi(a) associated withl.. are distinct. The corresponding Mellin
symbols M. (\) also smoothly depend on. Therefore inclusions (4.2) hold fa® (M. ) ,
thus, in the limit, for (M) . ]

Remark 4.4 When the two boundary systenis and C' are distinct, we have mixed
boundary value problem and the situation where the dorfiis a half-space is also of
interest in this case: the boundary of the half-spéte,, z,) , 1 € R, x5 > 0} is split
into the two partsl'y = {(x1,22), =1 € Ry, 2o = 0} and the boundary conditions are
givenby B on ', and by C on I'_. Then we have a factorization of the characteristic
matrix .4 (\) similar to (3.8) in the form

(P ) (B ) ()
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with the same matrice®8*, ¢* and F* as in (3.8) and new matriceB” defined as
EB(\) = diag((—1)"" XA —1)--- (A — pF + 1))

and similarly for E . Therefore, in that situation, we obtain that the singuiquoments

are distributed with a period instead of% according to
{N+kl1<j<n keZ}\J C &(M) 4.4)
S(M) C {N+k|1<j<n keZ}ulJ '

The fact that the singular exponents are distributed witergod 1 can be proved by a
more straightforward argument than the previous analysssiffices to remark that it
is a singular function belonging t& *(¢) , then 0, u is a singular function belonging to
XAHE) . n

5 Same boundary conditions on both sides of the crack

We consider in this section the case when the two systemswafriog boundary
conditions B and C' are equal. As a corollary of Theorem 4.3 we obtain:

Theorem 5.1 If B = C the spectrum&(M) of the Mellin symbol)M associated with
problem(1.1)satisfies the following inclusions:

{t¢|kez}\J c &WM) c {it|kez} (5.1)

PrOOF. If Hypothesis 3.1 holds, (5.1) is a consequence of (4.2)sihe operatof3—1¢
is now the identity, and thus the eigenvalues are all equal tol. Thusn» = 1 and
A1 = 0. If Hypothesis 3.1 does not hold, we obtain the result by &upeation argument
as before. [

For any non-integer singularity exponent, the corresponding singularity space
2 (¢) can be described precisely.

Theorem 5.2 If B = C the singularity spaces associated with problgni) satisfy for
any non-integer exponent = g ¢ N:

IMNE) = {u = ('r’)"T1 ©1(0),...,r"™ @N(G)) | (¢1,.-.,0Nn) € CID’\}, (5.2)

with a m -dimensional spac&” .

PROOF We assume that Hypothesis 3.1 holds. Rgtbelong to &(M) \ N. Since the
operatorB-1¢ is equal to the identity inn x m matrices, the order of\, as pole of
A (A) is 1 and there holds

2(%) = { / (W)= W (N)B) (1—e ™) B) 1w d), W e C,
7(Xo)
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where W*()\) = Wi(A)(Fi()\))*1 . Therefore
2 (€)= Range (W (o) — W~ (A\0)B) x E(X\o) .
As )\ does not belong ta/, E()g) is invertible. Thus
2 2(€) = Range (W*(A\o) — W~ (Ag)B). (5.3)

With Lemma 3.2 we now easily obtain (5.2). If Hypothesis 3desl not hold, we still
obtain the result by perturbation. [ |

Although they belong to the spectrum of the Mellin symbadiegers generally do not
produce singularities in ordinary Sobolev spaces if thenblany data satisfyy, = ¢g_ .
According to the principles of [5], see also [4], for any e A € N we introduce

NE) = {u € SN¥) solution of (1.1) with polynomialf , g. andg_ = g, }.

And the singularity space associated with such & a complementZ*(%¢) in (%)
of the homogeneous polynomials of multi-degree- 7 .

Theorem 5.3 1f B = C' there holds for integen\ € N large enough:

dim 22(%) =m, 2 (%) is a space of polynomials andz*(%¢) = {0}. (5.4)

PROOF  We assume that Hypothesis 3.1 holds. Letbelong toN \ J. Then we
have (5.3) and for\ large enough all columns of the matri¥’(\) are independent
polynomials. Therefore we have the first two assertions @f)(5

If X is an integer larger than alt,, o; and p? , then the operator
N N
(L, ’}/+B) . k®1 PA*TIC — ( ‘®1 ]P))\,oj) ® Cm
= ]:

has 2'*(¢) as kernel and a simple evaluation of dimensions yields thiginto. Then
we deduce that?*(¢’) coincides with@y P, ,, and thatZ* is reduced to zero. If
Hypothesis 3.1 does not hold, we obtain the result once mppeturbation. [ |

6 Mixed Dirichlet-Neumann problems for strongly coercive ystems

In the former sections, we have proved that in the most genasg the singularity
exponents have the formy; + £ with Re \; € [0, ) and that when the boundary condi-
tions B and C' coincide, the); are equal to) and that the integers in the family; + £
do not produce singularities in general. We are going tostigate an opposite situation
where the); all satisfy Re \; = 1 (thus for any intege , \; + g is not integer and is

an “active” singularity exponent).
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Our interior operator is still an elliptic systemlh = (L;;), but associated with a
variational formulation. The assumption about the ordéth@operator coefficients. ;;,
is that there existm,, ..., my) such that

deg L, = mj + my,.
We moreover assume that there are given coefficieﬁtsdefining a differential hermitian

product
a(u,v) = Z Z afg(?ﬁuj(?vv_k,

gk |Bl=my, |yl=ms
such that for any bounded domaii there holds

Yu € €°(Q)N, Yo e € (Q)N, /(Lu, v) dz = / a(u,v) dex.
Q Q

Here (f, g) denotes the hermitian produgt- g . Our assumption is the following

Hypothesis 6.1 1. The forma is strongly coercive in the sense that there exists a
constantc > 0 such that for allz/zf eC,j=1...,N, |B| = m;, there holds
the estimate

T N R AR N S S [ (6.1)

gk 1Bl=my, |yl=mxk J 1Bl=my

2. The system of boundary operatofs is the canonical Dirichlet system of order
(mi—1,...,my—1),i.e.

Bu = (u17 6nu17 e ,6;”1_1”[1/1’ ..o, UN, 6nuN, . 76;?]\,_1”]\[)
and the systent’ is the unique systefef [13]) such that there hold¥
ue [, B (0), o€ T, H™(@),

/Q<Lu, vy do = /Qa(u, v) dx + /89<Cu, Bv) do.

Let m be max;m,;. Then setting

(6.2)

ogj=m+m; and 7, =m —my,

we obtain that the system is in the framework we used above, and its Mellin symbol

is defined with (1.5) as usual. Of course, = m; + - -- + my and we can check that,
moreover

mi?xpf:m—l and m}zlixpg:2m—1.

Thus the set/ in (3.10) is simply

@ Equation (6.2) is valid in any case #Q is smooth. If 9Q is piecewise smooth and if one of the;
is > 2, it may happen that one has to add corner contributions tdghehand side of (6.2).
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{0,1,...,2m — 2}.
The aim of this section is the proof of (compare with Theoreg) 4

Theorem 6.2 Under Hypothese$.1, the Mellin symbolM associated with problem
(1.1) satisfies the following properties: There exists an integee {1,...,m} and
n distinct complex numberai™, ..., A\2" with ReA\’™ = 1, such that inclusion$4.2)
hold for its spectrumS (M) .

The proof of this theorem requires the consideration of j@mb(1.1) on any plane
sectoré™ of openingw , with w € (0, 27, that is

Lu = f in®v,
v4+(Bu) = g, onl,, (6.3)
v-(Cu) = g onT_,

wherel', istherayfd =0 andI'_ therayfd = w.

Our first step is to deduce Theorem 6.2 from the followingestegnt relating to the
mixed problem on the half-spacé™ :

Theorem 6.3 Under Hypothese$.1, the Mellin symbolM™ associated with problem
(6.3) on the half-space satisfies the following properties. Theists an integem €
{1,...,m} and n distinct complex numberaT, ..., A7 with Re AT = 3, such that the
following inclusions hold for its spectrur& (M ™)

{NM+k|1<j<n keZ}\J C &M

(6.4)
S(M™) C {N+k|1<j<n keZjulJ
with J = {0,1,...,2m — 2} .

PROOF OF“THEOREM 6.3 = THEOREM 6.2". The characteristic matrix#™(\) of
problem (6.3) on the half-spacé€™ can be factorized on a very similar way as in the case
of the domain%*" : instead of the factorization (3.9) we find

- B B
N ()‘) =F (/\) (eiw)\(,:Jr ez’w)\@:) F()‘)a (65)
with the same matrice®*, ¢* and F(\) asin (3.9), and

ET(\) = (EBO(A) Eco( A ) ;

with £Z asin (3.8) and

EC(\) = diag((=1)F AA = 1)--- (A= p§ +1)).
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Therefore (6.4) holds with certain} such thatRe AT € [0,1). Moreover, comparing
the factorizations (3.9) and (6.5) we clearly have

s

A7
Xr= (6.6)

It remains to prove thaRe AT = % . In order to do this we are going to prove the

following lemma which is inspired by [11].

Lemma6.4 Let w # 7 and # 2x. Then any singular exponent associated with
problem(6.3)satisfiesRe A # m — 1.

PROOFE Let us assume that there existswith Re A = m — % and such that there exists
a non-zero element of*(4*) solution of (6.3) with f = 0 and g. = 0. A standard
argument yields that: can be taken inS) (%), i.e. u is homogeneous. For fixed real

numberse and p such that) < ¢ < p, let us set
¢ ={x| e<r<p and 0<0<w}.

Then the boundary o¥7*, has four pieces

. . H 0 w
e its straight sided”. , and I'? ,

e its circular sidesG. and G,.
Let us setv := dyu . Then formula (6.2) yields

/ (Lu,v) doe = / a(u,v) dx +/ (Cu, Bv) do.
€, €L, e ,ury ,UGeUG,

The degrees of homogeneity af yield that the productCu, Bv) is an homogeneous
function of degree—1. Thereforé

/ (Cu, Bv)y do =0.
G-UG,

As v satisfies the Neumann conditioli&: = 0 on I'_, thusonI'¥ , we have

g,p!
/ (Cu,Bv)do =0.

F;f’p

As wu satisfies the Dirichlet conditions oﬁgap, and 0, is atangential derivativealong

I'? ., v = du also satisfies the Dirichlet condition and

/ (Cu, Bv)y do =0.
r

0
€,p

®)|f one has corner contributions to formula (6.2), they hawe degree of homogeneity and they
cancel out at the two extremities 6% , and ¢, .
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As Lu = 0, we are left with the equality

/ a(u,v) de =0.
%

But a(u,v) = a(u,d1u) = a(dyu,u). Moreover dya(u,u) = a(u,u) + a(dyu,u).
Therefore we find that

Re Ora(u,u) de=0.
%

Integrating by parts once more we obtain

Re/ ny a(u,u) do =0,
ro ,ure ,UG:-UG,

where n; is the horizontal component of the outer unit normal But like above the
homogeneity of the produet(u, ) is —1, thus

Re/ ny a(u,u) do = 0.
G-UG,

As n, =0 on rgp , we are left with

Re/ ny a(u,u) do = 0.
F;f’p
Since we have assumed that # = and # 27, n; is a non-zero constant ofiY .
Moreover estimate (6.1) yields th&e a(u,u) is > 0 everywhere. Thus we obtain
Re a(u,u) =0 on TY .
Applying (6.1) once more yields
Vi=1,....,N, VB, |8 =m;, 9’u; =0 on TY

Therefore for all¢ = 0,...,m; — 1 the restriction ofd’u; to Iy, isa ponnomialp§ .
As u; is homogeneous with non-integer degree, this polynomjélare necessarily .
Therefore u satisfies the Dirichlet condition®u = 0 on T’y ;. As u also satisfies
the Neumann conditions oh , finally u satisfies th&Cauchy conditionsn T'? . As

Lu = 0, by the Cauchy uniqueness theorem= 0 . [

Lemma 6.5 Any singular exponenf\ associated with probler(6.3) satisfiesRe A #
m—1.

PROOF  This result is classical and can easily be proved like leefiy considering
u € S}(€*) solution of problem (6.3) withf =0, g- =0 andReA =m — 1. Then it
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suffices to apply formula (6.2) witlk and v = « . Then we find that

/ a(u,u) dz =0,
%

whence we deduce with (6.1) thelj = 1,..., N, V3, |3| = m;, 8°u; = 0. Therefore
u; is a polynomial of degree< m;. As all its derivatives of ordex: m; are zero on

I? , we deduce that;; = 0, whenceu = 0. n

For eachw € (0,27, let {(w) be defined as
{(w)=min{ReA—m+1|] ReA>m—1 and Xe &(M¥)}.

The ellipticity of problem (6.3) implies that in any striRe A\ € [a,b] there is at most a
finite number of elements o5 (M¥) . Thus{(w) is always> 0. We have

Lemma 6.6 As w tends to0, {(w) tends to+oo .

PROOF We fix ¢, ¢, p/ and p with 0 < ¢ < ¢’ < p/ < p and take a smooth
function y > 0 on R whichis=1 for r € [¢/,p/] and= 0 for r < e andr > p.
Let A € &(M¥) with ReA > m — 1 and u be a corresponding singular function in
S3(€*) . We apply formula (6.2) foru and v = yu on Q = ¢, . We find that

/ a(u, xyu) dz = 0.
@,

w
cp

There exists a sesqui-linear fortnof order m and m—1 onits first and second argument
such that

a(u, xu) = xa(u,uw) + b(u,u).

As u; = r*Tip;(0), settingp = (¢1,...,¢x) and denotingm = (my,...,my) and
H™ the product of Sobolev spacgg; H™ , we obtain the estimates

/g xa(u,u) dz > 20B(Rel) |90|i1m(0,w) (6.7)

<o
and
[ by o] < RN el 19l mro
€,p

with positive “constants”g(Re A) and ~(Re A) which depend continuously olRe A
and not onw . As ¢ satisfies the Dirichlet conditions ofr = 0, we have the Poincaré
estimate in the form

||90||Hm*1(07w) S Cw |90|Hm(0,w) :
Combining the five previous formulas we obtain that

B(Re))

cw

7(Re A),
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in other words that there existcantinuous function) of Re A such that there holds

1
— < 4(Re)), VA € S(MY).
w
ThereforeRe A\ — +00 asw — 0. ]

As problem (6.3) is symmetric, there holds

Lemma 6.7 If \ belongs to&(M*), then2(m — 1) — X\ belongs to&(M*) too.

END OF PROOF OFTHEOREM 6.3. We already know;f Remark 4.4, that we have the
inclusions (6.4) with complex generator§ such thatRe \J € [0, 1) . Let us recall that
according to the factorization (6.5) thes¢ satisfy e?™i = s, with s; the eigenvalues
of B~1¢, cfalso (4.3). As the reunion of boundary conditioBsand C' is a Dirichlet
system of orde2m,; — 1 with respect to thej -th argumentu; , the matrix

BT B
¢t &
can be seen as a Wronskian and is non-singular. Theréfaenot an eigenvalue of

B¢ and AT is # 0.
It remains to prove that tha” satisfy

Vi=1,...,n, ReAl =1 (6.8)

Let us assume that (6.8) does not hold. This means that tkists at least one\] such

that Re A7 # 5. Thus we have eitheRe A7 < § or ReA] > 1. Inthe latter case,

applying Lemma 6.7 we obtain thatm — 1) —)\_;F also belongs taS(M™) . As A7 # 0,
the number2(m — 1) — A_;T is not integer and for any integér, 2(m — 1) — A_;T +k
belongs to&(M7™), in particular1 — A_;T whose real part is< % .

Anyway, using once more that] # 0 and the periodicity, we obtain the existence of
a non-integer element] of G(M™) suchthatRe ] € [m—1,m—3). By Lemma6.5,
Re \j # m — 1, hence

ReAj € (m—1, m—1).

The elements of5(M“) are continuous with respect to and for anyw € (0,7) we
can choose)y such that the application — A is continuous on(0, 7] . Moreover
Lemma 6.5 gives thatw € (0, 7], Re Ay > m — 1. Then Lemma 6.6 yields thate A\
tends to+o0o asw — 0. As Re )y is a continuous function, there exists € (0, 7)
such thatRe \j = m — % , Which contradicts Lemma 6.4. Therefore we have proved

(6.8). [
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7 Mixed Dirichlet-Neumann problems for general elasticity

Let us recall that the equations of linear two-dimensiofedtecity are based on the
bilinear form a acting on displacements = (u;,us) and v = (vq,v2) as

a(u,v) := Z A¥e i (u) e (v),
ijkl
wheree;;(u) is the linearized strain tensaf(d;u;+0;u;) and A%* is the rigidity matrix
of the material. The rigidity matrix satisfies the followisgmmetry properties
Aijkl — Ajikl — Aklij

and the following positivity property: There exists a camdtc > 0 such that for all2 x 2
symmetric matrices;;) , there holds the estimate

ZAijleiij > CZ|7'Z-]-|2. (7.1)
ij

15kl
The operatorL such that
Yu € €°(Q)?, Yo € €5°(0)?, /(Lu, v) dz = / a(u,v) dx (7.2)
Q Q

is elliptic of multi-order 2 in the sense of [1] but does not satisfy the strong coercivity
property (6.1). That is why Theorem 6.2 does not apply dientthis situation. Never-
theless, there still holds

Theorem 7.1 With the above propert{7.1) on A%* | the Mellin symbol)/ associated
with the elasticity problenil.1)on the crack domair¥’ with L given by(7.2)and with
Dirichlet conditions B and Neumann condition§’ satisfies the following properties:
There exists an integern € {1,2} and n distinct complex numbera?™, ... \2™ with
Re A?™ = 1, such that inclusioné.2) hold for its spectrumS (M) .

The proof follows the same lines as the proof of Theorem 612y Qiffer the argu-
ments in Lemmas 6.4 and 6.6.

Concerning Lemma 6.4, we take as function 0, u where 7, is the tangential
derivative along the sidé&'_ and we start from the Green formula

/ (Lv,u) doe = / a(u,v) dx +/ (Cv, Bu) do.
€, €L, e ,ury ,UGe UG,

As u satisfies the Dirichlet condition8u = 0 on I, , thus onI'? , we have

gp?

/ (Cv,Bu) do =0.
r

0
€,p
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As u satisfies the Neumann conditions 0t , and 9, is atangential derivativalong

I'Y,, v=0,,u also satisfies the Neumann condition and

/ (Cv,Bu) do =0.
re,

As Lu = 0, there also holdd.v = 0 and we are left with the equality

/ a(u,v) de =0.
e

Like in the proof of Lemma 6.4, as(u, u) is nonnegative we obtain that
a(u,u) =0 on Tgp.
Then inequality (7.1) yields that
Vi,j=1,2, eij(u)=0 on TI? .

As u satisfies the Dirichlet conditions oﬁgp we deduce from the above equality that
Onuy = Opug = 0 on T? . Finally u satisfies theCauchy conditionsn I'? , and we
conclude as previously.

In Lemma 6.6, everything works in the same way, except thatrder to obtain the
estimate (6.7) which now takes the form

2
L xa(u,u) dz > 26(Rel) |g0|H1(07w)

we have to use Korn inequality which, thanks to the Diriclolenditions oan,p, holds
with a constant uniform with respect to.

Remark 7.2 If we consider a three-dimensional elasticity problem incandin exte-
rior to a bounded two-dimensional manifold® with boundary 0. (we call . the
screen region), we have to determine the singularities néggized elasticity problems
on the two-dimensional domai#™™ : these generalized elasticity problems are obtained
by freezing the tangential variable along the edg#’ at each point ofd. . We can
prove by the same techniques as above that these generlbztidity problems satisfy
the conclusions of Theorem 7.1 too. [

8 Consequences for the regularity

The boundary value problems that we have considered inosscé and 7 have a
variational formulation and, if posed in a bounded dom&inhave a unique solution in
the variational space, which is the subspacd®Bf (H!' in the situation of elasticity)
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with Dirichlet boundary conditions. Let us assume tlfat= Q) \ . where Q, is a
smooth bounded domain an#’ is a smooth segment (or arc) whose closure is contained
in Q. Two trace operators are associated with: ~, and ~_, corresponding to the
choice of two boundary operatorB and C' and the boundary value problem is now,
instead (1.1)
Lu = f InQ,
v+(Bu) = g, ons, (8.1)
7-(Cu) = g ons,

Let us assume for simplicity that. = 0. We suppose thaf belongs toH* ™ () with
positive s .

If the boundary conditionsB and C' on . coincide (and are equal to Dirichlet
or Neumann), then. belongs toH™"(Q2) if s < 1, this regularity being generically
optimal.

If B is Dirichlet and C' Neumann (or the converse), thenbelongs toH™"#(Q2)
if s< i , this regularity being generically optimal, too.
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