A Remark on the Regularity of Solutions of Maxwell's Equations on Lipschitz Domains

Martin Costabel

Abstract

Let \vec{u} be a vector field on a bounded Lipschitz domain in \mathbb{R}^3 , and let \vec{u} together with its divergence and curl be square integrable. If either the normal or the tangential component of \vec{u} is square integrable over the boundary, then \vec{u} belongs to the Sobolev space $H^{1/2}$ on the domain. This result gives a simple explanation for known results on the compact embedding of the space of solutions of Maxwell's equations on Lipschitz domains into L^2 .

Let $\Omega \subset \mathbb{R}^3$ be a bounded simply connected domain with connected Lipschitz boundary Γ . This means that Γ can be represented locally as the graph of a Lipschitz function. For properties of Lipschitz domains, see [7], [3], [2]. In particular, Γ has the strict cone property.

We consider real vector fields \vec{u} on Ω satisfying in the distributional sense

$$\vec{u} \in L^2(\Omega)$$
; div $\vec{u} \in L^2(\Omega)$; curl $\vec{u} \in L^2(\Omega)$. (1)

We denote the inner product in $L^2(\Omega)$ by (\cdot, \cdot) .

It is well known that functions \vec{u} satisfying (1) have boundary values $\vec{n} \times \vec{u}$ and $\vec{n} \cdot \vec{u}$ in the Sobolev space $H^{-1/2}(\Gamma)$ defined in the distributional sense by the natural extension of the Green formulas

$$(\operatorname{curl} \vec{u}, \vec{v}) - (\vec{u}, \operatorname{curl} \vec{v}) = \langle \vec{n} \times \vec{u}, \vec{v} \rangle \tag{2}$$

$$(\operatorname{div} \vec{u}, \varphi) + (\vec{u}, \operatorname{grad} \varphi) = \langle \vec{n} \cdot \vec{u}, \varphi \rangle \tag{3}$$

for all $\vec{v}, \varphi \in H^1(\Omega)$.

CMU Research Report 89-44, April 1989, Carnegie Mellon University, Pittsburgh, PA. Math. Meth. Appl. Sci. 12 (1990) 365–368

Here \vec{n} denotes the exterior normal vector which exists almost everywhere on Γ , and $\langle \cdot, \cdot \rangle$ is the natural duality in $H^{-1/2}(\Gamma) \times H^{1/2}(\Gamma)$ extending the $L^2(\Gamma)$ inner product.

It is known that for smooth domains (e.g., $\Gamma \in C^{1,1}$), each one of the two boundary conditions

$$\vec{n} \times \vec{u} \in H^{1/2}(\Gamma)$$
 or $\vec{n} \cdot \vec{u} \in H^{1/2}(\Gamma)$ (4)

implies $\vec{u} \in H^1(\Omega)$, see [2] and, for the case of homogeneous boundary conditions, [6], where one finds also a counterexample for a nonsmooth domain. Such counterexamples are derived from nonsmooth weak solutions $v \in H^1(\Omega)$ of the Neumann problem $(\partial_n := \vec{n} \cdot \text{grad denotes the normal derivative})$

$$\Delta v = g \in L^2(\Omega); \qquad \partial_n v = 0 \quad \text{on } \Gamma$$
 (5)

If $\vec{u} = \operatorname{grad} v$, then \vec{u} satisfies (1) and $\vec{n} \cdot \vec{u} = 0$ on Γ , and $\vec{u} \in H^s(\Omega)$ if and only if $v \in H^{1+s}(\Omega)$. For smooth or convex domains, one knows that $v \in H^2(\Omega)$. If Ω has a nonconvex edge of opening angle $\alpha \pi$, $\alpha > 1$, then, in general, the solution v of (5) is not in $H^{1+s}(\Omega)$ for $s = 1/\alpha$, hence $\vec{u} \notin H^s(\Omega)$. This upper bound s for the smoothness of \vec{u} can be arbitrary close to 1/2.

Regularity theorems for (1), (4) have applications in the numerical approximation of the Stokes problem [2] and in the analysis of initial-boundary value problems for Maxwell's equations [6]. The compact embedding into $L^2(\Omega)$ of the space of solutions of the time-harmonic Maxwell equations is needed for the principle of limiting absorption. This compact embedding result was shown by Weck [10] for a class of piecewise smooth domains and by Weber [9] and Picard [8] for general Lipschitz domains. In these proofs, no regularity result for the solution \vec{u} was used or obtained. See Leis' book [6] for a discussion.

In this note, we use the result by Dahlberg, Jerison, and Kenig [4], [5] on the $H^{3/2}$ regularity for solutions of the Dirichlet and Neumann problems with L^2 data in potential theory (see Lemma 1 below). Together with arguments similar to those described by Girault and Raviart [2], this yields $\vec{u} \in H^{1/2}(\Omega)$ (Theorem 2). The compact embedding in L^2 is an obvious consequence of this regularity. If instead of Lemma 1, one uses only the more elementary tools from [1], one obtains $H^{3/2-\epsilon}$ regularity for solutions of the Dirichlet and Neumann problems in potential theory and, consequently $\vec{u} \in H^{1/2-\epsilon}(\Omega)$ for any $\epsilon > 0$. This kind of regularity is also known for the case of an open manifold Γ (screen problem). It suffices, of course, for the compact embedding result.

The proof of the following result can be found in [4].

Lemma 1 (Dahlberg-Jerison-Kenig) Let $v \in H^1(\Omega)$ satisfy $\Delta v = 0$ in Ω . Then the two conditions

(i)
$$v \upharpoonright_{\Gamma} \in H^1(\Gamma)$$
 and (ii) $\partial_n v \upharpoonright_{\Gamma} \in L^2(\Gamma)$

are equivalent. They imply $v \in H^{3/2}(\Omega)$.

Remarks.

- a.) The first assertion in the Lemma goes back to Nečas [7].
- b.) There are accompanying norm estimates, viz. There exist constants C_1 , C_2 , C_3 , independent of v such that

$$C_1 \|\partial_n v\|_{L^2(\Gamma)} \le \|\vec{n} \times \operatorname{grad} v\|_{L^2(\Gamma)} \le C_2 \|\partial_n v\|_{L^2(\Gamma)},$$

$$||v||_{H^{3/2}(\Omega)} \leq C_3 ||v|_{\Gamma} ||_{H^1(\Gamma)}.$$

c.) The boundary values are attained in a stronger sense than the distributional sense (2), (3), namely pointwise almost everywhere in the sense of nontangential maximal functions in $L^2(\Gamma)$.

Theorem 2 Let \vec{u} satisfy the conditions (1) in Ω and either

$$\vec{n} \times \vec{u} \in L^2(\Gamma) \tag{6}$$

or

$$\vec{n} \cdot \vec{u} \in L^2(\Gamma) \,. \tag{7}$$

Then $\vec{u} \in H^{1/2}(\Omega)$.

If (1) is satisfied, then the two conditions (6) and (7) are equivalent.

Proof. The proof follows the lines of [2]. It is presented in detail to make sure that it is valid for Lipschitz domains.

Let $\vec{f} := \operatorname{curl} \vec{u} \in L^2(\Omega)$. Then div $\vec{f} = 0$ in Ω .

According to [2, Ch. I, Thm 3.4] there exists $\vec{w} \in H^1(\Omega)$ with

$$\operatorname{curl} \vec{w} = \vec{f}, \quad \operatorname{div} \vec{w} = 0 \quad \text{in } \Omega.$$
 (8)

The construction of \vec{w} is as follows:

Choose a ball \mathcal{O} containing $\overline{\Omega}$ in its interior and solve in $\mathcal{O}\setminus\overline{\Omega}$ the Neumann problem: $\chi\in H^1(\mathcal{O}\setminus\overline{\Omega})$ with

$$\Delta \chi = 0 \text{ in } \mathcal{O} \setminus \overline{\Omega}; \ \partial_n \chi = \vec{n} \cdot \vec{f} \text{ on } \Gamma; \ \partial_n \chi = 0 \text{ on } \partial \mathcal{O}.$$
 (9)

Note that $\vec{n} \cdot \vec{f} \in H^{-1/2}(\Gamma)$ satisfies the solvability condition $\langle \vec{n} \cdot \vec{f}, 1 \rangle = 0$ because div $\vec{f} = 0$ in Ω .

Define $\vec{f_0} := \vec{f}$ in Ω , $\vec{f_0} := \operatorname{grad} \chi$ in $\mathcal{O} \setminus \overline{\Omega}$, $\vec{f_0} := 0$ in $\mathbb{R}^3 \setminus \overline{\mathcal{O}}$. Then $\vec{f_0} \in L^2(\mathbb{R}^3)$ has compact support and satisfies div $\vec{f_0} = 0$ in \mathbb{R}^3 . Therefore $\vec{f_0} = \operatorname{curl} \vec{w}$ for some $\vec{w} \in H^1(\mathbb{R}^3)$ with div $\vec{w} = 0$ in \mathbb{R}^3 . One obtains \vec{w} for example by convolution of $\vec{f_0}$ with a fundamental solution of the Laplace operator in \mathbb{R}^3 and taking the curl.

Thus (8) is satisfied. The function $\vec{z} := \vec{u} - \vec{w}$ satisfies

$$\vec{z} \in L^2(\Omega)$$
 and $\operatorname{curl} \vec{z} = 0$ in Ω . (10)

Since Ω is simply connected, there exists $v \in H^1(\Omega)$ with

$$\vec{z} = \operatorname{grad} v. \tag{11}$$

Then v satisfies

$$\Delta v = \operatorname{div} \vec{u} \in L^2(\Omega) . \tag{12}$$

We can apply Lemma 1 to v, because by subtraction of a suitable function in $H^2(\Omega)$, we obtain a homogeneous Laplace equation from (12).

Now, since $\vec{w} \upharpoonright_{\Gamma} \in H^{1/2}(\Gamma)$, condition (i) in the Lemma is equivalent to

$$\vec{n} \times \operatorname{grad} v = \vec{n} \times \vec{z} = \vec{n} \times \vec{u} - \vec{n} \times \vec{w} \in L^2(\Gamma)$$

and hence to (6), and condition (ii) is equivalent to

$$\vec{n} \cdot \operatorname{grad} v = \vec{n} \cdot \vec{z} = \vec{n} \cdot \vec{u} - \vec{n} \cdot \vec{w} \in L^2(\Gamma)$$

and hence to (7). Therefore the Lemma implies that (6) and (7) are equivalent.

Also, $v \in H^{3/2}(\Omega)$ is equivalent to grad $v \in H^{1/2}(\Omega)$, hence to

$$\vec{u} = \vec{z} + \vec{w} = \operatorname{grad} v + \vec{w} \in H^{1/2}(\Omega) .$$

Remark. The accompanying norm estimates are: There exist constants C_1 , C_2 , C_3 , independent of \vec{u} such that

$$\begin{aligned} \|\vec{n} \times \vec{u}\|_{L^{2}(\Gamma)} &\leq C_{1} \left(\|\vec{u}\|_{L^{2}(\Omega)} + \|\operatorname{div} \vec{u}\|_{L^{2}(\Omega)} + \|\operatorname{curl} \vec{u}\|_{L^{2}(\Omega)} + \|\vec{n} \cdot \vec{u}\|_{L^{2}(\Gamma)} \right) \\ \|\vec{n} \cdot \vec{u}\|_{L^{2}(\Gamma)} &\leq C_{2} \left(\|\vec{u}\|_{L^{2}(\Omega)} + \|\operatorname{div} \vec{u}\|_{L^{2}(\Omega)} + \|\operatorname{curl} \vec{u}\|_{L^{2}(\Omega)} + \|\vec{n} \times \vec{u}\|_{L^{2}(\Gamma)} \right) \\ \|\vec{u}\|_{H^{1/2}(\Omega)} &\leq C_{3} \left(\|\vec{u}\|_{L^{2}(\Omega)} + \|\operatorname{div} \vec{u}\|_{L^{2}(\Omega)} + \|\operatorname{curl} \vec{u}\|_{L^{2}(\Omega)} + \|\vec{n} \times \vec{u}\|_{L^{2}(\Gamma)} \right) . \end{aligned}$$

References

- [1] M. Costabel. Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988) 613–626.
- [2] V. GIRAULT, P. RAVIART. Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin 1986.
- [3] P. Grisvard. Boundary Value Problems in Non-Smooth Domains. Pitman, London 1985.
- [4] D. S. Jerison, C. E. Kenig. The Neumann problem on Lipschitz domains. *Bull. Amer. Math. Soc.* 4 (1981) 203–207.
- [5] D. S. Jerison, C. E. Kenig. Boundary value problems on Lipschitz domains. In W. Littmann, editor, *Studies in Partial Differential Equations. MAA Studies in Mathematics 23*, pages 1–68. Math. Assoc. of America, Washington, D. C. 1982.
- [6] R. Leis. Initial Boundary Value Problems in Mathematical Physics. John Wiley & Sons, Chichester 1986.
- [7] J. Nečas. Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris 1967.
- [8] R. PICARD. An elementary proof for a compact imbedding result in generalized electromagnetic theory. *Math. Z.* **187** (1984) 151–164.
- [9] C. Weber. A local compactness theorem for Maxwell's equations. *Math. Meth. Appl. Sci.* **2** (1980) 12–25.
- [10] N. WECK. Maxwell's boundary value problem on Riemannian manifolds with nonsmooth boundaries. J. Math. Anal. Appl. 46 (1974) 410–437.