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Abstract

Let ~u be a vector field on a bounded Lipschitz domain in R
3, and

let ~u together with its divergence and curl be square integrable. If
either the normal or the tangential component of ~u is square inte-
grable over the boundary, then ~u belongs to the Sobolev space H

1/2

on the domain. This result gives a simple explanation for known re-
sults on the compact embedding of the space of solutions of Maxwell’s
equations on Lipschitz domains into L

2.

Let Ω ⊂ R
3 be a bounded simply connected domain with connected Lip-

schitz boundary Γ. This means that Γ can be represented locally as the
graph of a Lipschitz function. For properties of Lipschitz domains, see [7],
[3], [2]. In particular, Γ has the strict cone property.

We consider real vector fields ~u on Ω satisfying in the distributional sense

~u ∈ L2(Ω) ; div ~u ∈ L2(Ω) ; curl ~u ∈ L2(Ω) . (1)

We denote the inner product in L2(Ω) by (·, ·).
It is well known that functions ~u satisfying (1) have boundary values ~n×~u

and ~n · ~u in the Sobolev space H−1/2(Γ) defined in the distributional sense
by the natural extension of the Green formulas

(curl ~u, ~v) − (~u, curl~v) = <~n × ~u, ~v> (2)

(div ~u, ϕ) + (~u, grad ϕ) = <~n · ~u, ϕ> (3)

for all ~v, ϕ ∈ H1(Ω).
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Here ~n denotes the exterior normal vector which exists almost everywhere
on Γ, and < ·, ·> is the natural duality in H−1/2(Γ)×H1/2(Γ) extending the
L2(Γ) inner product.

It is known that for smooth domains (e.g., Γ ∈ C1,1), each one of the two
boundary conditions

~n × ~u ∈ H1/2(Γ) or ~n · ~u ∈ H1/2(Γ) (4)

implies ~u ∈ H1(Ω), see [2] and, for the case of homogeneous boundary con-
ditions, [6], where one finds also a counterexample for a nonsmooth domain.
Such counterexamples are derived from nonsmooth weak solutions v ∈ H1(Ω)
of the Neumann problem (∂n := ~n · grad denotes the normal derivative)

∆v = g ∈ L2(Ω) ; ∂nv = 0 on Γ (5)

If ~u = grad v, then ~u satisfies (1) and ~n · ~u = 0 on Γ, and ~u ∈ Hs(Ω) if
and only if v ∈ H1+s(Ω). For smooth or convex domains, one knows that
v ∈ H2(Ω). If Ω has a nonconvex edge of opening angle απ, α > 1, then, in
general, the solution v of (5) is not in H1+s(Ω) for s = 1/α, hence ~u 6∈ Hs(Ω).
This upper bound s for the smoothness of ~u can be arbitrary close to 1/2.

Regularity theorems for (1), (4) have applications in the numerical ap-
proximation of the Stokes problem [2] and in the analysis of initial-boundary
value problems for Maxwell’s equations [6]. The compact embedding into
L2(Ω) of the space of solutions of the time-harmonic Maxwell equations is
needed for the principle of limiting absorption. This compact embedding
result was shown by Weck [10] for a class of piecewise smooth domains and
by Weber [9] and Picard [8] for general Lipschitz domains. In these proofs,
no regularity result for the solution ~u was used or obtained. See Leis’ book
[6] for a discussion.

In this note, we use the result by Dahlberg, Jerison, and Kenig [4], [5] on
the H3/2 regularity for solutions of the Dirichlet and Neumann problems with
L2 data in potential theory (see Lemma 1 below). Together with arguments
similar to those described by Girault and Raviart [2], this yields ~u ∈ H1/2(Ω)
(Theorem 2). The compact embedding in L2 is an obvious consequence of
this regularity. If instead of Lemma 1, one uses only the more elementary
tools from [1], one obtains H3/2−ǫ regularity for solutions of the Dirichlet and
Neumann problems in potential theory and, consequently ~u ∈ H1/2−ǫ(Ω)
for any ǫ > 0. This kind of regularity is also known for the case of an
open manifold Γ (screen problem). It suffices, of course, for the compact
embedding result.

The proof of the following result can be found in [4].
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Lemma 1 (Dahlberg-Jerison-Kenig) Let v ∈ H1(Ω) satisfy ∆v = 0 in Ω.
Then the two conditions

(i) v ↾Γ ∈ H1(Γ) and (ii) ∂nv ↾Γ ∈ L2(Γ)

are equivalent. They imply v ∈ H3/2(Ω).

Remarks.

a.) The first assertion in the Lemma goes back to Nečas [7].
b.) There are accompanying norm estimates, viz.

There exist constants C1, C2, C3, independent of v such that

C1‖∂nv‖L2(Γ) ≤ ‖~n × grad v‖L2(Γ) ≤ C2‖∂nv‖L2(Γ) ,

‖v‖H3/2(Ω) ≤ C3‖v ↾Γ ‖H1(Γ) .

c.) The boundary values are attained in a stronger sense than the distri-
butional sense (2), (3), namely pointwise almost everywhere in the sense of
nontangential maximal functions in L2(Γ).

Theorem 2 Let ~u satisfy the conditions (1) in Ω and either

~n × ~u ∈ L2(Γ) (6)

or
~n · ~u ∈ L2(Γ) . (7)

Then ~u ∈ H1/2(Ω).
If (1) is satisfied, then the two conditions (6) and (7) are equivalent.

Proof. The proof follows the lines of [2]. It is presented in detail to make
sure that it is valid for Lipschitz domains.
Let ~f := curl ~u ∈ L2(Ω). Then div ~f = 0 in Ω.
According to [2, Ch. I, Thm 3.4] there exists ~w ∈ H1(Ω) with

curl ~w = ~f , div ~w = 0 in Ω. (8)

The construction of ~w is as follows:
Choose a ball O containing Ω in its interior and solve in O\Ω the Neumann
problem: χ ∈ H1(O \ Ω) with

∆χ = 0 in O \ Ω ; ∂nχ = ~n · ~f on Γ ; ∂nχ = 0 on ∂O . (9)

Note that ~n · ~f ∈ H−1/2(Γ) satisfies the solvability condition <~n · ~f, 1> = 0

because div ~f = 0 in Ω.
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Define ~f0 := ~f in Ω, ~f0 := gradχ in O\Ω, ~f0 := 0 in R
3\O. Then ~f0 ∈ L2(R3)

has compact support and satisfies div ~f0 = 0 in R
3. Therefore ~f0 = curl ~w

for some ~w ∈ H1(R3) with div ~w = 0 in R
3. One obtains ~w for example by

convolution of ~f0 with a fundamental solution of the Laplace operator in R
3

and taking the curl.
Thus (8) is satisfied. The function ~z := ~u − ~w satisfies

~z ∈ L2(Ω) and curl ~z = 0 in Ω. (10)

Since Ω is simply connected, there exists v ∈ H1(Ω) with

~z = grad v . (11)

Then v satisfies
∆v = div ~u ∈ L2(Ω) . (12)

We can apply Lemma 1 to v, because by subtraction of a suitable function
in H2(Ω) , we obtain a homogeneous Laplace equation from (12).

Now, since ~w ↾Γ ∈ H1/2(Γ), condition (i) in the Lemma is equivalent to

~n × grad v = ~n × ~z = ~n × ~u − ~n × ~w ∈ L2(Γ)

and hence to (6), and condition (ii) is equivalent to

~n · grad v = ~n · ~z = ~n · ~u − ~n · ~w ∈ L2(Γ)

and hence to (7). Therefore the Lemma implies that (6) and (7) are equiva-
lent.
Also, v ∈ H3/2(Ω) is equivalent to grad v ∈ H1/2(Ω), hence to

~u = ~z + ~w = grad v + ~w ∈ H1/2(Ω) .

Remark. The accompanying norm estimates are:
There exist constants C1, C2, C3, independent of ~u such that

‖~n × ~u‖L2(Γ) ≤ C1

(

‖~u‖L2(Ω) + ‖ div ~u‖L2(Ω) + ‖ curl ~u‖L2(Ω) + ‖~n · ~u‖L2(Γ)

)

‖~n · ~u‖L2(Γ) ≤ C2

(

‖~u‖L2(Ω) + ‖ div ~u‖L2(Ω) + ‖ curl ~u‖L2(Ω) + ‖~n × ~u‖L2(Γ)

)

‖~u‖H1/2(Ω) ≤ C3

(

‖~u‖L2(Ω) + ‖ div ~u‖L2(Ω) + ‖ curl ~u‖L2(Ω) + ‖~n × ~u‖L2(Γ)

)

.
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